如圖,已知等邊三角形ABC中,點(diǎn)D,E,F(xiàn)分別為邊AB,AC,BC的中點(diǎn),M為直線BC上一動(dòng)點(diǎn),△DMN為等邊三角形(點(diǎn)M的位置改變時(shí),△DMN也隨之整體移動(dòng)).
![](http://hiphotos.baidu.com/zhidao/pic/item/adaf2edda3cc7cd909adf3683a01213fb90e91fb.jpg)
(1)如圖1,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你判斷EN與MF有怎樣的數(shù)量關(guān)系?點(diǎn)F是否在直線NE上?都請(qǐng)直接寫出結(jié)論,不必證明或說明理由;
(2)如圖2,當(dāng)點(diǎn)M在BC上時(shí),其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說明理由;
(3)若點(diǎn)M在點(diǎn)C右側(cè)時(shí),請(qǐng)你在圖3中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)直接寫出結(jié)論,不必證明或說明理由.
(1)判斷:EN與MF相等(或EN=MF),點(diǎn)F在直線NE上,
![](http://hiphotos.baidu.com/zhidao/pic/item/4610b912c8fcc3ce164c0e829145d688d53f20f7.jpg)
(2)成立.
連接DF,NF,證明△DBM和△DFN全等(AAS),
∵△ABC是等邊三角形,
∴AB=AC=BC.
又∵D,E,F(xiàn)是三邊的中點(diǎn),
∴EF=DF=BF.
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,
∴∠BDM=∠FDN,
在△DBM和△DFN中,
,
∴△DBM≌△DFN,
∴BM=FN,∠DFN=∠FDB=60°,
∴NF∥BD,
∵E,F(xiàn)分別為邊AC,BC的中點(diǎn),
∴EF是△ABC的中位線,
∴EF∥BD,
∴F在直線NE上,
∵BF=EF,
∴MF=EN.
![](http://hiphotos.baidu.com/zhidao/pic/item/c2cec3fdfc0392450e3926be8494a4c27c1e25f7.jpg)
(3)如圖③,MF與EN相等的結(jié)論仍然成立(或MF=NE成立).
連接DF、DE,
由(2)知DE=DF,∠NDE=∠FDM,DN=DM,
在△DNE和△DMF中,
∴△DNE≌△DMF,
∴MF=NE.