精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • Finding The Solution

    Finding The Solution
    Do you like puzzles?Euler did.Did you solve the one you heard for the listening task?No!Well,do not worry,Euler did not either!As he loved mathematical puzzles,he wanted to know why this one would not work.So he walked around the town and over the bridges of Konigsberg several times.To his surprise,he found that he could cross six of the bridge without going over any of them twice or going back on himself(see Fig 3),but he could not cross all seven.He just had to know why.So he decided to look at the problem another way.
    He drew himself a picture of the town and the seven bridges like the one above.He marked the land and the bridges.Then he put a dot or point into the centre of each of the areas of land.He joined these points together using curved lines going to them(A,B and C) and one had five(D).He wondered if this was importand and why the puzzle would not work.As three and five are odd numbers he called them "odd" points.To make the puzzle clearer he took away the bridges to see the pattern more clearly(see Fig 2).
    He wondered whether the puzzle would work if he took one bridge away (as in Fig 3).This time the diagram was simpler(as in Fig 4).He counted the lines going to points A,B,C and D.This time they were different.Two of them had even numbers of lines(B had two and D had four).Two and four are both even numbers so Euler called them "even" points.Two points in Fig 4 had an odd number of lines going to them(A and C both had three) and so he called them "odd" points.
    Using this new diagram Euler started at point A,went along the straight line to Band then to C.Then he followed the curved line through D and back to A.Finally he followed the ofther curved line from A back through D to C where he finished the pattern.This time it worked.He had been able to go over the figure visiting each point but not going over any line twice or lifting his pencil from the page.Euler became very excited.Now he knew that the number of odd points was the key to the puzzle.However,you still needed some even points in your figure if you wanted it to work.So Euler looked for a general rule:
    If a figure has more than two odd points,you cannot go over it without lifting your pencil from the page or gong over a line twice,
    Quickly he went to his textbooks to find some more figures.He looked at the four diagrams shown below and found that when he used his rule,he could tell if he could go over the whole figure without taking his pencil from the paper.He was overjoyed.He did not know it but his little puzzle had started a whole new branch of mathematics called "topology".In his honour this puzzle is called "finding the Euler path" .
    英語翻譯,不要翻譯機(jī)器,我都試過的……用人腦翻譯,看完以后大體說一下就可以了,讓我明白,
    英語人氣:656 ℃時間:2020-05-28 07:00:29
    優(yōu)質(zhì)解答
    找到解決問題的方法你喜歡難題呢?歐拉所做的.你解決你聽到的任務(wù)嗎?聽不!哦,別擔(dān)心,歐拉沒有!因為他熱愛數(shù)學(xué)難題,他想知道為什么這一不工作所以他走在城里,在橋梁的Konigsberg好幾次了.但是令他吃驚的是,他發(fā)現(xiàn)他能...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版