一、三角
·平方關(guān)系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
·積的關(guān)系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒數(shù)關(guān)系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC中,
角A的正弦值就等于角A的對邊比斜邊,
余弦等于角A的鄰邊比斜邊
正切等于對邊比鄰邊,
·[1]三角函數(shù)恒等變形公式
·兩角和與差的三角函數(shù):
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:
Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中
sint=B/(A²+B²)^(1/2)
cost=A/(A²+B²)^(1/2)
tant=B/A
Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)
tan(2α)=2tanα/[1-tan²(α)]
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin²(α)=(1-cos(2α))/2=versin(2α)/2
cos²(α)=(1+cos(2α))/2=covers(2α)/2
tan²(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan²(α/2)]
cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
tanα=2tan(α/2)/[1-tan²(α/2)]
·推導(dǎo)公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos²α
1-cos2α=2sin²α
1+sinα=(sinα/2+cosα/2)²
誘導(dǎo)公式
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
正弦定理是指在三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R為外接圓的半徑)
余弦定理是指三角形中任何一邊的平方等于其它兩邊的平方和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2-2bc cosA
角A的對邊于斜邊的比叫做角A的正弦,記作sinA,即sinA=角A的對邊/斜邊
斜邊與鄰邊夾角a
sin=y/r
無論y>x或y≤x
無論a多大多小可以任意大小
正弦的最大值為1 最小值為-1
三角恒等式
對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC
證明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
則(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
類似地,我們同樣也可以求證:當(dāng)α+β+γ=nπ(n∈Z)時(shí),總有tanα+tanβ+tanγ=tanαtanβtanγ
向量計(jì)算
設(shè)a=(x,y),b=(x',y').
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則.
AB+BC=AC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的運(yùn)算律:
交換律:a+b=b+a;
結(jié)合律:(a+b)+c=a+(b+c).
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點(diǎn),指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數(shù)乘向量
實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣.
當(dāng)λ>0時(shí),λa與a同方向;
當(dāng)λ<0時(shí),λa與a反方向;
當(dāng)λ=0時(shí),λa=0,方向任意.
當(dāng)a=0時(shí),對于任意實(shí)數(shù)λ,都有λa=0.
注:按定義知,如果λa=0,那么λ=0或a=0.
實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮.
當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍.
數(shù)與向量的乘法滿足下面的運(yùn)算律
結(jié)合律:(λa)·b=λ(a·b)=(a·λb).
向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.
3、向量的的數(shù)量積
定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π].
定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b.若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣.
向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'.
向量的數(shù)量積的運(yùn)算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數(shù)量積的性質(zhì)
a·a=|a|的平方.
a⊥b 〈=〉a·b=0.
|a·b|≤|a|·|b|.
向量的數(shù)量積與實(shí)數(shù)運(yùn)算的主要不同點(diǎn)
1、向量的數(shù)量積不滿足結(jié)合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
2、向量的數(shù)量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.
3、|a·b|≠|(zhì)a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b.
高一數(shù)學(xué)下學(xué)期重點(diǎn)知識和公式總結(jié)
高一數(shù)學(xué)下學(xué)期重點(diǎn)知識和公式總結(jié)
數(shù)學(xué)人氣:985 ℃時(shí)間:2020-02-03 02:03:51
優(yōu)質(zhì)解答
我來回答
類似推薦
- 求高一數(shù)學(xué)所有的知識要點(diǎn),公式總結(jié) 主要是集合 函數(shù)的部分
- 高一數(shù)學(xué)總結(jié)公式概念
- 高一數(shù)學(xué)必修四基本公式總結(jié)
- 高一數(shù)學(xué)必修5全部公式總結(jié)
- 高一數(shù)學(xué)必修一公式總結(jié)
- 某人用392牛的力豎直向上提質(zhì)量為30千克的物體,他能否提起?物體受到的合力是多大?方向如何?
- 英語翻譯
- (X 3)的平方-X平方=39如何解
- 占地面積943.9千平方米等于多少畝
- over the two days .over two days 和in over two
- 小數(shù)和整數(shù)的意義相同嗎?
- 從視覺,聽覺,嗅覺,味覺角度描寫春天景物的詩句
猜你喜歡
- 1You are the love of my life 中文意思
- 2小學(xué)六年級英語考卷的題目,急!
- 3袋中裝的球,除去兩個(gè)以外都是紅色,除去兩個(gè)以外都是黃色球,除去兩個(gè)以外都是藍(lán)色球,請問袋中共裝有幾個(gè)球?
- 4青山水泥廠要把一批水泥運(yùn)到碼頭,用本廠的一輛貨車來運(yùn)需10才能運(yùn)完;如果用運(yùn)輸公司的一輛大貨車來運(yùn)只需5次就能運(yùn)完.現(xiàn)由本廠的一輛貨車運(yùn)送了4次,剩下部分由本廠一輛貨車和運(yùn)輸公司的一輛大貨車共同運(yùn)送,問剩下的需要幾次才能運(yùn)完(要算式)
- 5∫dx/(sinx+cosx)
- 6請教關(guān)于泰語的發(fā)音問題
- 7有關(guān)當(dāng)幸福來敲門的英文介紹
- 8小明的臥室經(jīng)測量長是3米,寬是5米,高是2.8米,其中門窗所占的面積是6平方米求粉刷臥室的面積
- 9歌頌父母之愛的名言警句
- 10下列生活里常見現(xiàn)象中,一定涉及化學(xué)變化的是( ?。?A.冰雪融化 B.冰箱中放入活性炭后,異味消失 C.點(diǎn)燃酒精加熱火鍋 D.榨取果汁
- 11下面的小動物分別代表哪個(gè)數(shù)字?
- 12工字開頭的成語