精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 復(fù)數(shù)的三角函數(shù)

    復(fù)數(shù)的三角函數(shù)

    如何解這兩道的復(fù)數(shù)Z?
    數(shù)學(xué)人氣:295 ℃時(shí)間:2020-03-29 12:48:29
    優(yōu)質(zhì)解答
    (iii) z=x+iy
    cosz=cos(x+iy)=cosxcos(iy)-sinx sin(iy)
    =cos(x) cosh(y) – sin(x) [i*sinh(y)]
    Im cosz>0.5
    -sin(x) * sinh(y) > 0.5
    sin(x) * sinh(y) < - 0.5
    (iv) z=x+iy
    sinh(z)=sinh(x+iy)=sinh(x)cosh(iy)+cosh(x)sinh(iy)
    =sinh(x)cos(-y) + [cosh(x)]* [-i*sin(-y)]
    =sinh(x) cos(y) +i*[cosh(x)] *sin(y)
    |sinh z|={ [sinh(x) cos(y) ]^2+[[cosh(x)] *sin(y)]^2}*(1/2)
    ={ [sinh(x) ]^2 * [cos(y) ]^2+[[cosh(x)] ^2*(1-[cos(y)]^2)}*(1/2)
    ={ [ cos(y) ]^2 * ([sinh(x)]^2 – [cosh(x)]^2)+[[cosh(x)]^2}*(1/2)
    ={- [ cos(y) ]^2 +[[cosh(x)]^2}*(1/2) < 2這兩題最后的答案就不能再化簡(jiǎn)了么?(iii)sin(x)>0, sinh(y)<-0.5, 00.5,y>0.481211(iv){- [ cos(y) ]^2 +[[cosh(x)]^2}*(1/2) < 2- [ cos(y) ]^2 +[[cosh(x)]^2< 4[[cosh(x)]^2< 5, cosh(x)總是>0cosh(x)<1.443635最后一題- [cos(y)]^2 +[cosh(x)]^2< 4不能直接到[cosh(x)]^2< 5吧...0≤[cos(y)]^2≤1,- [ cos(y) ]^2 +[[cosh(x)]^2+[cos(y)]^2< 4+[cos(y)]^2<5[cosh(x)]^2< 5cosh(x)<平方根5, x<1.44363547我覺得只有當(dāng)y=0+2kπ的時(shí)候x<1.44363547吧,x的范圍應(yīng)該也是與y相關(guān)的范圍是指最大范圍
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版