∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,
根據(jù)三角形的外角性質(zhì),
∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,
又∵∠EDM=84°,
∴∠A+3∠A=84°,
解得,∠A=21°;
(2)∵AB=BC=CD=DE=EF=FG=GA,設(shè)∠A=x°,
則∠AFG=∠ACB=x°,∠CGF=∠CEF=∠CBF=∠CDF=2x°,
∠ECD=∠CED=∠EFD=∠EDF=3x°,
而∠A+∠CED+∠EDF=180°,故x=
180 |
7 |
180° |
7 |