數學分析:construct a sequence (tn) of real numbers according to the following recursive rules:
t0=0; t(n+1)=tn+(25-tn^2)/10
a) show that (tn) is convergent
b)compute the limit of tn as n goes to infinity
謝謝!
a)0
{tn}是有界無窮數列,所以必定收斂
b)設limtn=x,則x=x+(25-x^2)/5,x=5(x=-5舍去)
即limtn=5能詳細解釋一下為什么0
=0又t(n+1)=5-0.1(tn-5)^2<5初值t0=0也屬于[0,5]