Sbn= 1/3 + 2/(3*3) + 3/(3*3*3)+ ...+n/(3^n)
= (1/3+1/(3*3)+1/(3*3*3)+...+1/(3^n)) + (1/(3*3)+1/(3*3*3)+...+1/(3^n)) +...+1/(3^n), 共n項(xiàng)
=(1-1/3^n)/2 + (1/3-1/3^n)/2+...+1/3^n
=(1-1/3^n)/2 + (1/3-1/3^n)/2+...+(1/3^(n-1)-1/3^n)/2
=(1+1/3+1/3*3+...+1/3^(n-1))/2 - n/(2*(3^n))
=(1-1/3^n)*3/4-n/(2*(3^n))
=3/4 - (3+2n)/(4*3^n)
一個(gè)字一個(gè)字敲的,望采納。