函數(shù)概念是全部數(shù)學(xué)概念中最重要的概念之一,縱觀300年來(lái)函數(shù)概念的發(fā)展,眾多數(shù)學(xué)家從集合、代數(shù)、直至對(duì)應(yīng)、集合的角度不斷賦予函數(shù)概念以新的思想,從而推動(dòng)了整個(gè)數(shù)學(xué)的發(fā)展.本文擬通過(guò)對(duì)函數(shù)概念的發(fā)展與比較的研究,對(duì)函數(shù)概念的教學(xué)進(jìn)行一些探索.
1、函數(shù)概念的縱向發(fā)展
1.1 早期函數(shù)概念——幾何觀念下的函數(shù)
十七世紀(jì)伽俐略(G.Galileo,意,1564-1642)在《兩門新科學(xué)》一書中,幾乎從頭到尾包含著函數(shù)或稱為變量的關(guān)系這一概念,用文字和比例的語(yǔ)言表達(dá)函數(shù)的關(guān)系.1673年前后笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已經(jīng)注意到了一個(gè)變量對(duì)于另一個(gè)變量的依賴關(guān)系,但由于當(dāng)時(shí)尚未意識(shí)到需要提煉一般的函數(shù)概念,因此直到17世紀(jì)后期牛頓、萊布尼茲建立微積分的時(shí)候,數(shù)學(xué)家還沒(méi)有明確函數(shù)的一般意義,絕大部分函數(shù)是被當(dāng)作曲線來(lái)研究的.
1.2 十八世紀(jì)函數(shù)概念——代數(shù)觀念下的函數(shù)
1718年約翰·貝努利(BernoulliJohann,瑞,1667-1748)才在萊布尼茲函數(shù)概念的基礎(chǔ)上,對(duì)函數(shù)概念進(jìn)行了明確定義:由任一變量和常數(shù)的任一形式所構(gòu)成的量,貝努利把變量x和常量按任何方式構(gòu)成的量叫“x的函數(shù)”,表示為,其在函數(shù)概念中所說(shuō)的任一形式,包括代數(shù)式子和超越式子.
18世紀(jì)中葉歐拉(L.Euler,瑞,1707-1783)就給出了非常形象的,一直沿用至今的函數(shù)符號(hào).歐拉給出的定義是:一個(gè)變量的函數(shù)是由這個(gè)變量和一些數(shù)即常數(shù)以任何方式組成的解析表達(dá)式.他把約翰·貝努利給出的函數(shù)定義稱為解析函數(shù),并進(jìn)一步把它區(qū)分為代數(shù)函數(shù)(只有自變量間的代數(shù)運(yùn)算)和超越函數(shù)(三角函數(shù)、對(duì)數(shù)函數(shù)以及變量的無(wú)理數(shù)冪所表示的函數(shù)),還考慮了“隨意函數(shù)”(表示任意畫出曲線的函數(shù)),不難看出,歐拉給出的函數(shù)定義比約翰·貝努利的定義更普遍、更具有廣泛意義.
1.3 十九世紀(jì)函數(shù)概念——對(duì)應(yīng)關(guān)系下的函數(shù)
1822年傅里葉(Fourier,法,1768-1830)發(fā)現(xiàn)某些函數(shù)可用曲線表示,也可用一個(gè)式子表示,或用多個(gè)式子表示,從而結(jié)束了函數(shù)概念是否以唯一一個(gè)式子表示的爭(zhēng)論,把對(duì)函數(shù)的認(rèn)識(shí)又推進(jìn)了一個(gè)新的層次.1823年柯西(Cauchy,法,1789-1857)從定義變量開始給出了函數(shù)的定義,同時(shí)指出,雖然無(wú)窮級(jí)數(shù)是規(guī)定函數(shù)的一種有效方法,但是對(duì)函數(shù)來(lái)說(shuō)不一定要有解析表達(dá)式,不過(guò)他仍然認(rèn)為函數(shù)關(guān)系可以用多個(gè)解析式來(lái)表示,這是一個(gè)很大的局限,突破這一局限的是杰出數(shù)學(xué)家狄利克雷.
1837年狄利克雷(Dirichlet,德,1805-1859)認(rèn)為怎樣去建立x與y之間的關(guān)系無(wú)關(guān)緊要,他拓廣了函數(shù)概念,指出:“對(duì)于在某區(qū)間上的每一個(gè)確定的x值,y都有一個(gè)或多個(gè)確定的值,那么y叫做x的函數(shù).”狄利克雷的函數(shù)定義,出色地避免了以往函數(shù)定義中所有的關(guān)于依賴關(guān)系的描述,簡(jiǎn)明精確,以完全清晰的方式為所有數(shù)學(xué)家無(wú)條件地接受.至此,我們已可以說(shuō),函數(shù)概念、函數(shù)的本質(zhì)定義已經(jīng)形成,這就是人們常說(shuō)的經(jīng)典函數(shù)定義.
等到康托爾(Cantor,德,1845-1918)創(chuàng)立的集合論在數(shù)學(xué)中占有重要地位之后,維布倫(Veblen,美,1880-1960)用“集合”和“對(duì)應(yīng)”的概念給出了近代函數(shù)定義,通過(guò)集合概念,把函數(shù)的對(duì)應(yīng)關(guān)系、定義域及值域進(jìn)一步具體化了,且打破了“變量是數(shù)”的極限,變量可以是數(shù),也可以是其它對(duì)象(點(diǎn)、線、面、體、向量、矩陣等).
1.4 現(xiàn)代函數(shù)概念——集合論下的函數(shù)
1914年豪斯道夫(F.Hausdorff)在《集合論綱要》中用“序偶”來(lái)定義函數(shù).其優(yōu)點(diǎn)是避開了意義不明確的“變量”、“對(duì)應(yīng)”概念,其不足之處是又引入了不明確的概念“序偶”.庫(kù)拉托夫斯基(Kuratowski)于1921年用集合概念來(lái)定義“序偶”,即序偶(a,b)為集合{{a},},這樣,就使豪斯道夫的定義很嚴(yán)謹(jǐn)了.1930年新的現(xiàn)代函數(shù)定義為,若對(duì)集合M的任意元素x,總有集合N確定的元素y與之對(duì)應(yīng),則稱在集合M上定義一個(gè)函數(shù),記為y=f(x).元素x稱為自變?cè)?元素y稱為因變?cè)?
函數(shù)概念的定義經(jīng)過(guò)三百多年的錘煉、變革,形成了函數(shù)的現(xiàn)代定義形式,但這并不意味著函數(shù)概念發(fā)展的歷史終結(jié),20世紀(jì)40年代,物理學(xué)研究的需要發(fā)現(xiàn)了一種叫做Dirac-δ函數(shù),它只在一點(diǎn)處不為零,而它在全直線上的積分卻等于1,這在原來(lái)的函數(shù)和積分的定義下是不可思議的,但由于廣義函數(shù)概念的引入,把函數(shù)、測(cè)度及以上所述的Dirac-δ函數(shù)等概念統(tǒng)一了起來(lái).因此,隨著以數(shù)學(xué)為基礎(chǔ)的其他學(xué)科的發(fā)展,函數(shù)的概念還會(huì)繼續(xù)擴(kuò)展.
函數(shù)概念的形成
函數(shù)概念的形成
數(shù)學(xué)人氣:843 ℃時(shí)間:2020-02-06 01:18:03
優(yōu)質(zhì)解答
我來(lái)回答
類似推薦
- 主題為(1)函數(shù)概念的形成;(2)函數(shù)概念的發(fā)展;(3)函數(shù)的應(yīng)用
- 函數(shù)的定義?構(gòu)成要素?(詳細(xì)解答哦)
- 函數(shù)概念形成的歷史過(guò)程
- 以下敘述中正確的是( )A構(gòu)成C程序的基本單位是函數(shù) B 可以在一個(gè)函數(shù)中定義另一個(gè)函數(shù)C main ()
- 函數(shù)概念y=f(x)或表達(dá)式是怎樣產(chǎn)生的?
- My father has lunch at twelve o'clock.(對(duì)劃線部分提問(wèn))劃線部分是at twelve o'clock.
- 運(yùn)動(dòng)會(huì)開幕式現(xiàn)場(chǎng)放飛100個(gè)藍(lán)氣球、紅氣球、黃氣球,其中紅氣球比黃氣球多2個(gè),藍(lán)氣球比黃氣球少1個(gè),三種氣球各有多少個(gè)?
- What‘s your favorite TV show怎樣回答
- jony用英文怎么讀,最好把音標(biāo)寫出來(lái),
- 描寫舞蹈的文章
- 學(xué)校要粉刷新教室學(xué)校要粉刷新教室,已知教室的長(zhǎng)為12米,寬為6米,高為35米,除去門窗的面積18平方米,如
- 由FeO、Fe2O3、Fe3O4組成的混合物,測(cè)得其中鐵元素與氧元素的質(zhì)量比為21:8,則這種混合物中FeO、Fe2O3、Fe3O4的物質(zhì)的量之比可能為( ?。?A.1:2:1 B.2:1:1 C.1:1:1 D.1:1:38
猜你喜歡
- 1《畫蛇添足》的故事中,“為蛇足者”為什么“終亡其酒”?
- 2花費(fèi)時(shí)間take和spend的區(qū)別
- 3醛可以生成醇
- 4一根鐵絲長(zhǎng)24米,要把它圍成一個(gè)長(zhǎng)方形,長(zhǎng)是寬的1.4倍,這個(gè)長(zhǎng)方形的面積是( )平方米?
- 5請(qǐng)教在五聲調(diào)式體系中,調(diào)號(hào)相同的調(diào)式稱為 ( ) A、同名調(diào) B、平行調(diào) C、同宮調(diào) D、同主音調(diào)
- 6圖書館有甲乙兩個(gè)書架,后來(lái)甲書添38本,乙書借出72本,這時(shí)甲架是乙架書的3倍,求甲乙書架各有書多少本?
- 7計(jì)算:1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2009)(x+2010)=1/2x+4020
- 8擴(kuò)建前的面積是605萬(wàn)平方米,比擴(kuò)建后約少40分之27,擴(kuò)建后的面積約是多少萬(wàn)平方米
- 9Nobody wants to eat them,__ __?怎么填
- 10a familiar visitor的意思!
- 11五年級(jí)下冊(cè)暑假作業(yè)(英語(yǔ))
- 12千瓦和大卡怎么換算