![](http://hiphotos.baidu.com/zhidao/pic/item/95eef01f3a292df53c2a21a4bf315c6035a87392.jpg)
∴四邊形AEOC為矩形.
∵BF⊥x軸,BD⊥y軸,
∴四邊形BDOF為矩形.
∵AC⊥x軸,BD⊥y軸,
∴四邊形AEDK,DOCK,CFBK均為矩形.(1分)
∵OC=x1,AC=y1,x1?y1=k,
∴S矩形AEOC=OC?AC=x1?y1=k
∵OF=x2,F(xiàn)B=y2,x2?y2=k,
∴S矩形BDOF=OF?FB=x2?y2=k.
∴S矩形AEOC=S矩形BDOF.
∵S矩形AEDK=S矩形AEOC-S矩形DOCK,S矩形CFBK=S矩形BDOF-S矩形DOCK,
∴S矩形AEDK=S矩形CFBK.(2分)
②由(1)知:S矩形AEDK=S矩形CFBK.
∴AK?DK=BK?CK.
∴
AK |
CK |
BK |
DK |
∵∠AKB=∠CKD=90°,
∴△AKB∽△CKD.(5分)
∴∠CDK=∠ABK.
∴AB∥CD.(6分)
∵AC∥y軸,
∴四邊形ACDN是平行四邊形.
∴AN=CD.(7分)
同理BM=CD.
∴AN=BM.(8分)
(2)AN與BM仍然相等.(9分)
∵S矩形AEDK=S矩形AEOC+S矩形ODKC,S矩形BKCF=S矩形BDOF+S矩形ODKC,
又∵S矩形AEOC=S矩形BDOF=k,
∴S矩形AEDK=S矩形BKCF.(10分)
∴AK?DK=BK?CK.
∴
CK |
AK |
DK |
BK |
∵∠K=∠K,
∴△CDK∽△ABK.
∴∠CDK=∠ABK.
∴AB∥CD.(11分)
∵AC∥y軸,
∴四邊形ANDC是平行四邊形.
∴AN=CD.
同理BM=CD.
∴AN=BM.(12分)