c·d=(4sinα,1)·(sinα/2,1)=2sinα^2+1
1
a·b-c·d=2+cos(2α)-2sinα^2-1=1+cos(2α)-2sinα^2
=cos(2α)+cos(2α)=2cos(2α)
α∈(0,π/4),即:2α∈(0,π/2)
故:2cos(2α)∈(0,2),即:a·b-c·d∈(0,2)
2
f(a·b)=|2+cos(2α)-1|=2|cosα^2|=2cosα^2
f(c·d)=|2sinα^2+1-1|=2|sinα^2|=2sinα^2
α∈(0,π/4),0
即:f(a·b)>f(c·d)