精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 求三角函數(shù)的最小正周期那個最小公倍數(shù)法如何證明?

    求三角函數(shù)的最小正周期那個最小公倍數(shù)法如何證明?
    設(shè)sin3x、cos5x的最小正周期分別為T1、T2,則T1=2π/3,T2=2π/5 ,所以y=sin3x+cos5x的最小正周期T=2π/1=2π.追問那怎么得出就是兩個函數(shù)的最小正周期的分子的最小公倍數(shù)比分母的最大公約數(shù)?
    最小正周期T=2π/1=2π.這個是怎么寫的?
    數(shù)學(xué)人氣:592 ℃時間:2020-04-07 18:31:16
    優(yōu)質(zhì)解答
    3 和 5 的最大公約數(shù)為1,這樣2π 除以最大公約數(shù)=最小公倍數(shù).
    證明可以用定義法,即 f(x+T) =f(x),T≠0能詳細解釋一下這題嗎?為什么用2π?你可以看一下教材,正弦曲線是利用單位圓證明的,繞圓轉(zhuǎn)一圈是2π,所以sinx 周期是2π假如一個函數(shù)的周期是2π/3,另一個函數(shù)的周期是π/2,那么最小公倍數(shù)是多少?這種類型的知識點老師沒有講過可以這么做分子變成相同,2π/3與 2π/4, 分母3與4的最大公約數(shù)為1,所以最小正周期為2π/1 =2π。那么7π和5π/4又該怎么做?35π/5與35π/28,5與28最大公約數(shù)為1,所以最小正周期為35π/1 =35π
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版