當(dāng)機(jī)器人的感覺(jué),當(dāng)它移動(dòng)時(shí),分別為.
假設(shè)機(jī)器人只是感覺(jué)到秒馬爾可夫定位,然后
P(升Ĵ s)為FF p上(的J升)芘(升)
其中FF是一個(gè)正規(guī)化,確保由此產(chǎn)生的概率
能力總結(jié)為一個(gè).當(dāng)機(jī)器人的動(dòng)作,馬爾可夫
本地化更新P(升)
能力:
P(:01)=
使用的總概率定理,
ž
P(〇升Ĵ了;升)芘(升)分升
這里指的行動(dòng)命令.這兩個(gè)更新
方程的形式對(duì)馬爾可夫定位的基礎(chǔ).嚴(yán)格
而言,他們是只適用的環(huán)境符合
條件獨(dú)立性假設(shè)(馬爾可夫假定:-
tion),其中規(guī)定,該機(jī)器人的構(gòu)成是唯一的國(guó)家
其中.換句話說(shuō),馬爾可夫定位只適用于
靜態(tài)環(huán)境.
不幸的是,標(biāo)準(zhǔn)馬爾可夫定位的AP -
proach容易失敗在人口稠密的環(huán)境中,
因?yàn)檫@些違反基本馬爾可夫假設(shè).在
博物館里,人們經(jīng)常堵住了機(jī)器人的傳感器,
如圖1所示.形象地說(shuō),如果人們
排隊(duì)為“墻”在機(jī)器人的前面,他們往往
確實(shí),基本馬爾可夫定位模式,使
機(jī)器人終于相信它確實(shí)是在一墻前.
為了解決這個(gè)問(wèn)題,犀牛采用了“熵
過(guò)濾器“(??怂沟热?1998年b).此過(guò)濾器,它是適用于所有
個(gè)別接近測(cè)量,各種測(cè)量
兩個(gè)水桶:一個(gè)包含所有被假定為肺心病,
rupted傳感器的讀數(shù),而且是假設(shè)包含
只有真實(shí)的(非損壞)的.要確定哪些
傳感器的讀數(shù)已損壞,這主要是因?yàn)?恩,
熵的信念狀態(tài)相對(duì)熵過(guò)濾措施
前后裝有感應(yīng)測(cè)量:
P(L)的疏水常數(shù)(升)升+ P(升Ĵ s)疏水常數(shù)(升Ĵ s)分升
升傳感器的讀數(shù),增加機(jī)器人的確定性
(_H(升中,S)“0)被認(rèn)為是真實(shí)的.所有其他森
長(zhǎng)遠(yuǎn)發(fā)展策略的讀數(shù)被認(rèn)為是損壞的,因此
沒(méi)有納入機(jī)器人的信念.在博物館里,
可靠地確定過(guò)濾器傳感器讀數(shù)被發(fā)現(xiàn)
敗壞了在場(chǎng)的人,只要機(jī)器人
知道它的大致構(gòu)成.不幸的是,熵過(guò)濾,
之三可以防止機(jī)器人一旦恢復(fù)其立場(chǎng)松動(dòng)
完全.為了避免這個(gè)問(wèn)題,我們的做法也incor -
porates一個(gè)隨機(jī)選擇的傳感器讀數(shù)少數(shù)
除了由選定的過(guò)濾器的熵.見(jiàn)(??怂?
等.1998年b)對(duì)于這個(gè)問(wèn)題的替代解決方案
求高手迅速英語(yǔ)翻譯成中文
求高手迅速英語(yǔ)翻譯成中文
whentherobotsenses,andwhenitmoves,respectively.
Suppose the robot just sensed s.Markov localization then
P (l j s) = ff P(s j l) P(l)
where ff is a normalizer that ensures that the resulting prob-
abilitiessumuptoone. Whentherobotmoves,Markov
localization updates P(l)
ability:
P ( 0l) =
using the Theorem of total prob-
Z
P ( 0lj a;l) P(l) dl
Here adenotesanactioncommand.Thesetwoupdate
equationsformthebasisofMarkovlocalization. Strictly
speaking, they are only applicable if the environment meets
aconditional independenceassumption(Markovassump-
tion), which specifiesthat the robot's pose is the only state
therein. Put differently, Markov localization applies only to
static environments.
Unfortunately, the standard Markov localization ap-
proachis prone to fail in denselypopulated environments,
sincethose violate the underlying Markovassumption.In
the museum, people frequently blocked the robot's sensors,
asillustrated in Figure 1.Figuratively speaking,if people
line up as a "wall" in front of the robot—which they often
did—,thebasicMarkovlocalizationparadigmmakesthe
robot eventually believe that it is indeed in front of a wall.
Toremedythisproblem,RHINOemploysan"entropy
filter" (Fox et al. 1998b). This filter, which is applied to all
proximity measurementsindividually, sortsmeasurements
intotwobuckets: onethatisassumedtocontainallcor-
rupted sensor readings, and one that is assumedto contain
onlyauthentic(non-corrupted) ones. Todeterminewhich
sensorreadingiscorruptedandwhichoneisnot,theen-
tropy filter measuresthe relative entropy of the belief state
before and after incorporating a proximity measurement:
P(l) logP(l) dl +P(l j s)logP(l j s) dl
lSensorreadingsthatincreasetherobot'scertainty
(_H(l;s) > 0) are assumed to be authentic. All other sen-
sor readings are assumedto be corrupted and are therefore
notincorporatedintotherobot'sbelief. Inthemuseum,
certainty filters reliably identified sensor readings that were
corruptedbythepresenceofpeople,aslongastherobot
knew its approximate pose.Unfortunately, the entropy fil-
ter canpreventrecoveryoncethe robot loosesitsposition
entirely.To prevent this problem, our approach also incor-
porates a small number of randomly chosen sensor readings
in addition to those selected by the entropy filter.See (Fox
et al. 1998b) for an alternative solution to this problem.
whentherobotsenses,andwhenitmoves,respectively.
Suppose the robot just sensed s.Markov localization then
P (l j s) = ff P(s j l) P(l)
where ff is a normalizer that ensures that the resulting prob-
abilitiessumuptoone. Whentherobotmoves,Markov
localization updates P(l)
ability:
P ( 0l) =
using the Theorem of total prob-
Z
P ( 0lj a;l) P(l) dl
Here adenotesanactioncommand.Thesetwoupdate
equationsformthebasisofMarkovlocalization. Strictly
speaking, they are only applicable if the environment meets
aconditional independenceassumption(Markovassump-
tion), which specifiesthat the robot's pose is the only state
therein. Put differently, Markov localization applies only to
static environments.
Unfortunately, the standard Markov localization ap-
proachis prone to fail in denselypopulated environments,
sincethose violate the underlying Markovassumption.In
the museum, people frequently blocked the robot's sensors,
asillustrated in Figure 1.Figuratively speaking,if people
line up as a "wall" in front of the robot—which they often
did—,thebasicMarkovlocalizationparadigmmakesthe
robot eventually believe that it is indeed in front of a wall.
Toremedythisproblem,RHINOemploysan"entropy
filter" (Fox et al. 1998b). This filter, which is applied to all
proximity measurementsindividually, sortsmeasurements
intotwobuckets: onethatisassumedtocontainallcor-
rupted sensor readings, and one that is assumedto contain
onlyauthentic(non-corrupted) ones. Todeterminewhich
sensorreadingiscorruptedandwhichoneisnot,theen-
tropy filter measuresthe relative entropy of the belief state
before and after incorporating a proximity measurement:
P(l) logP(l) dl +P(l j s)logP(l j s) dl
lSensorreadingsthatincreasetherobot'scertainty
(_H(l;s) > 0) are assumed to be authentic. All other sen-
sor readings are assumedto be corrupted and are therefore
notincorporatedintotherobot'sbelief. Inthemuseum,
certainty filters reliably identified sensor readings that were
corruptedbythepresenceofpeople,aslongastherobot
knew its approximate pose.Unfortunately, the entropy fil-
ter canpreventrecoveryoncethe robot loosesitsposition
entirely.To prevent this problem, our approach also incor-
porates a small number of randomly chosen sensor readings
in addition to those selected by the entropy filter.See (Fox
et al. 1998b) for an alternative solution to this problem.
英語(yǔ)人氣:971 ℃時(shí)間:2020-03-28 09:11:05
優(yōu)質(zhì)解答
我來(lái)回答
類(lèi)似推薦
猜你喜歡
- 1列式計(jì)算的要求是什么?題目只要求列式計(jì)算,沒(méi)有補(bǔ)充說(shuō)明,那么能不能分步計(jì)算或是用解方程來(lái)計(jì)算?
- 2overall 和 all in all 是不是都可以表示 “總的來(lái)說(shuō);總之”的意思?
- 3詩(shī)詞 望穿秋水 不見(jiàn)高軒的意思
- 4若a=-5,a+b+c=-5.2,求代數(shù)式a2(-b-c)-3.2(c+b)的值.
- 5求兩道列式計(jì)算
- 6X=6+(6+X)×1/3 22-X×1/4-1/5X=1 (126-X)×2/9-1/6X=7
- 7等腰梯形底角為60度,如何平分成四個(gè)大小形狀都一樣的
- 8山字下面一個(gè)豆字念什么?
- 9關(guān)于物質(zhì)的ph值
- 10How much is this seeater?同義句()()()this sweater cost?
- 11一般血毒的癥狀是什么?
- 12一艘宇宙飛船A與另一艘正在空中環(huán)繞地球運(yùn)行的飛船B對(duì)接在一起,以( )