精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 求高手迅速英語(yǔ)翻譯成中文

    求高手迅速英語(yǔ)翻譯成中文
    whentherobotsenses,andwhenitmoves,respectively.
    Suppose the robot just sensed s.Markov localization then
    P (l j s) = ff P(s j l) P(l)
    where ff is a normalizer that ensures that the resulting prob-
    abilitiessumuptoone. Whentherobotmoves,Markov
    localization updates P(l)
    ability:
    P ( 0l) =
    using the Theorem of total prob-
    Z
    P ( 0lj a;l) P(l) dl
    Here adenotesanactioncommand.Thesetwoupdate
    equationsformthebasisofMarkovlocalization. Strictly
    speaking, they are only applicable if the environment meets
    aconditional independenceassumption(Markovassump-
    tion), which specifiesthat the robot's pose is the only state
    therein. Put differently, Markov localization applies only to
    static environments.
    Unfortunately, the standard Markov localization ap-
    proachis prone to fail in denselypopulated environments,
    sincethose violate the underlying Markovassumption.In
    the museum, people frequently blocked the robot's sensors,
    asillustrated in Figure 1.Figuratively speaking,if people
    line up as a "wall" in front of the robot—which they often
    did—,thebasicMarkovlocalizationparadigmmakesthe
    robot eventually believe that it is indeed in front of a wall.
    Toremedythisproblem,RHINOemploysan"entropy
    filter" (Fox et al. 1998b). This filter, which is applied to all
    proximity measurementsindividually, sortsmeasurements
    intotwobuckets: onethatisassumedtocontainallcor-
    rupted sensor readings, and one that is assumedto contain
    onlyauthentic(non-corrupted) ones. Todeterminewhich
    sensorreadingiscorruptedandwhichoneisnot,theen-
    tropy filter measuresthe relative entropy of the belief state
    before and after incorporating a proximity measurement:
    P(l) logP(l) dl +P(l j s)logP(l j s) dl
    lSensorreadingsthatincreasetherobot'scertainty
    (_H(l;s) > 0) are assumed to be authentic. All other sen-
    sor readings are assumedto be corrupted and are therefore
    notincorporatedintotherobot'sbelief. Inthemuseum,
    certainty filters reliably identified sensor readings that were
    corruptedbythepresenceofpeople,aslongastherobot
    knew its approximate pose.Unfortunately, the entropy fil-
    ter canpreventrecoveryoncethe robot loosesitsposition
    entirely.To prevent this problem, our approach also incor-
    porates a small number of randomly chosen sensor readings
    in addition to those selected by the entropy filter.See (Fox
    et al. 1998b) for an alternative solution to this problem.
    英語(yǔ)人氣:971 ℃時(shí)間:2020-03-28 09:11:05
    優(yōu)質(zhì)解答
    當(dāng)機(jī)器人的感覺(jué),當(dāng)它移動(dòng)時(shí),分別為.
    假設(shè)機(jī)器人只是感覺(jué)到秒馬爾可夫定位,然后
    P(升Ĵ s)為FF p上(的J升)芘(升)
    其中FF是一個(gè)正規(guī)化,確保由此產(chǎn)生的概率
    能力總結(jié)為一個(gè).當(dāng)機(jī)器人的動(dòng)作,馬爾可夫
    本地化更新P(升)
    能力:
    P(:01)=
    使用的總概率定理,
    ž
    P(〇升Ĵ了;升)芘(升)分升
    這里指的行動(dòng)命令.這兩個(gè)更新
    方程的形式對(duì)馬爾可夫定位的基礎(chǔ).嚴(yán)格
    而言,他們是只適用的環(huán)境符合
    條件獨(dú)立性假設(shè)(馬爾可夫假定:-
    tion),其中規(guī)定,該機(jī)器人的構(gòu)成是唯一的國(guó)家
    其中.換句話說(shuō),馬爾可夫定位只適用于
    靜態(tài)環(huán)境.
    不幸的是,標(biāo)準(zhǔn)馬爾可夫定位的AP -
    proach容易失敗在人口稠密的環(huán)境中,
    因?yàn)檫@些違反基本馬爾可夫假設(shè).在
    博物館里,人們經(jīng)常堵住了機(jī)器人的傳感器,
    如圖1所示.形象地說(shuō),如果人們
    排隊(duì)為“墻”在機(jī)器人的前面,他們往往
    確實(shí),基本馬爾可夫定位模式,使
    機(jī)器人終于相信它確實(shí)是在一墻前.
    為了解決這個(gè)問(wèn)題,犀牛采用了“熵
    過(guò)濾器“(??怂沟热?1998年b).此過(guò)濾器,它是適用于所有
    個(gè)別接近測(cè)量,各種測(cè)量
    兩個(gè)水桶:一個(gè)包含所有被假定為肺心病,
    rupted傳感器的讀數(shù),而且是假設(shè)包含
    只有真實(shí)的(非損壞)的.要確定哪些
    傳感器的讀數(shù)已損壞,這主要是因?yàn)?恩,
    熵的信念狀態(tài)相對(duì)熵過(guò)濾措施
    前后裝有感應(yīng)測(cè)量:
    P(L)的疏水常數(shù)(升)升+ P(升Ĵ s)疏水常數(shù)(升Ĵ s)分升
    升傳感器的讀數(shù),增加機(jī)器人的確定性
    (_H(升中,S)“0)被認(rèn)為是真實(shí)的.所有其他森
    長(zhǎng)遠(yuǎn)發(fā)展策略的讀數(shù)被認(rèn)為是損壞的,因此
    沒(méi)有納入機(jī)器人的信念.在博物館里,
    可靠地確定過(guò)濾器傳感器讀數(shù)被發(fā)現(xiàn)
    敗壞了在場(chǎng)的人,只要機(jī)器人
    知道它的大致構(gòu)成.不幸的是,熵過(guò)濾,
    之三可以防止機(jī)器人一旦恢復(fù)其立場(chǎng)松動(dòng)
    完全.為了避免這個(gè)問(wèn)題,我們的做法也incor -
    porates一個(gè)隨機(jī)選擇的傳感器讀數(shù)少數(shù)
    除了由選定的過(guò)濾器的熵.見(jiàn)(??怂?
    等.1998年b)對(duì)于這個(gè)問(wèn)題的替代解決方案
    我來(lái)回答
    類(lèi)似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版