?2x+b |
2x+1+2 |
∴f(0)=
?1+b |
4 |
(2)由(1)可得:f(x)=
?2x+1 |
2x+1+2 |
1 |
2x+1 |
1 |
2 |
?x1<x2,則2x2>2x1>0,
∴f(x1)-f(x2)=
1 |
2x1+1 |
1 |
2 |
1 |
2x2+1 |
1 |
2 |
2x2?2x1 |
(2x1+1)(2x2+1) |
∴f(x1)>f(x2).
∴函數(shù)f(x)在R上是減函數(shù).
(3)∵函數(shù)f(x)是R上的奇函數(shù),對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,
∴f(t2-2t)<-f(2t2-k)=f(k-2t2),
∵函數(shù)f(x)在R上是減函數(shù),
∴t2-2t>k-2t2,
∴k<3t2-2t=3(t?
1 |
3 |
1 |
3 |
∴k<?
1 |
3 |
因此k的取值范圍是k<?
1 |
3 |