在△ABC中,已知∠A=80°,∠C=30°,現(xiàn)把△CDE沿DE進(jìn)行不同的折疊得△C′DE,對(duì)折疊后產(chǎn)生的夾角進(jìn)行探究:
![](http://hiphotos.baidu.com/zhidao/pic/item/4bed2e738bd4b31cb4cf7d0a84d6277f9f2ff894.jpg)
(1)如圖(1)把△CDE沿DE折疊在四邊形ADEB內(nèi),則求∠1+∠2的和;
(2)如圖(2)把△CDE沿DE折疊覆蓋∠A,則求∠1+∠2的和;
(3)如圖(3)把△CDE沿DE斜向上折疊,探求∠1、∠2、∠C的關(guān)系.
![](http://hiphotos.baidu.com/zhidao/pic/item/060828381f30e924842175804f086e061c95f7fe.jpg)
(1)∠1+∠2=180°-2∠CDE+180°-2∠CED
=360°-2(∠CDE+∠CED)
=360°-2(180°-∠C)
=2∠C
=60°;
![](http://hiphotos.baidu.com/zhidao/pic/item/e824b899a9014c0851bec114097b02087af4f4fe.jpg)
(2)連接DG,
∠1+∠2=180°-∠C′-(∠ADG+∠AGD)
=180°-30°-(180°-80°)
=50°;
(3)∠2-∠1=180°-2∠CED-(2∠CDE-180°)
![](http://hiphotos.baidu.com/zhidao/pic/item/4d086e061d950a7b40b0a77509d162d9f3d3c9fe.jpg)
=360°-2(∠CDE+∠CED)
=360°-2(180°-∠C)
=2∠C
所以:∠2-∠1=2∠C.