=(1/7)n^7+(1/2)n^6+(1/2)n^5-(1/6)n^3+(1/42)n怎樣得出的,非常感謝通法如下:
因?yàn)?^k,2^k,3^k,...,n^k是k階等差數(shù)列,故
不妨設(shè)1^k+2^k+3^k+...+n^k
=a0(k)+a1(k)*n+a2(k)*n^2+...+ak+1(k+1)n^(k+1)
經(jīng)計(jì)算可得:
a0(k)=0
ai(k)=P(k+1,k),i=1,…,k-1
ak(k)=1/2
ak+1(k+1)=1/k
其中
P(i,i)=1/k,i=1,…,k+1
P(i,j)=-(1/i)(∑(n=j,…,i-1)C(i,n-1)P(n,j),i
當(dāng)k=6時(shí),由上面公式不難得出
1^6+2^6+3^6+......+n^6
=(1/7)n^7+(1/2)n^6+(1/2)n^5-(1/6)n^3+(1/42)n