精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • ƒ’(x)=arctan(x-1) f(1)=0 求∫f(x)dx 積分區(qū)間是(0,1)

    ƒ’(x)=arctan(x-1) f(1)=0 求∫f(x)dx 積分區(qū)間是(0,1)
    數(shù)學(xué)人氣:915 ℃時(shí)間:2020-02-05 03:57:30
    優(yōu)質(zhì)解答
    f(x)=∫f'(x)dx=∫arctan(x-1)dx=xarctan(x-1)-∫x*1/[1+(x-1)^2]dx
    =xarctan(x-1)-∫[(x-1)+1]/[1+(x-1)^2]dx=xarctan(x-1)-∫[(x-1)/[1+(x-1)^2]dx-)-∫1/[1+(x-1)^2]dx
    =xarctan(x-1)-1/2*ln[1+(x-1)^2]-arctan(x-1)+C=(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]+C
    由f(1)=0得C=0,故f(x)=(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]
    故∫(0,1) f(x)dx=∫(0,1) {(x-1)arctan(x-1)-1/2*ln[1+(x-1)^2]}dx (令t=x-1)
    =∫(-1,0) [tarctant-1/2*ln(1+t^2)]dt
    ∫[tarctant-1/2*ln(1+t^2)]dt=∫arctantd(1/2*t^2)-1/2*t*ln(1+t^2)+∫t*1/(1+t^2)*2tdt
    =1/2*t^2*arctant-∫1/2*t^2*1/(1+t^2)dt-1/2*t*ln(1+t^2)+∫2t^2/(1+t^2)dt
    =1/2*t^2*arctant-1/2*t*ln(1+t^2)+3/2*∫[1-1/(1+t^2)]dt
    =1/2*t^2*arctant-1/2*t*ln(1+t^2)+3t/2-3/2*arctant+C
    =(t^2-3)/2*arctant+t/2*[3-ln(1+t^2)]+C
    故∫(0,1) f(x)dx=∫(-1,0) [tarctant-1/2*ln(1+t^2)]dt
    ={(t^2-3)/2*arctant+t/2*[3-ln(1+t^2)]}|(-1,0)
    =-π/4
    我來(lái)回答
    類(lèi)似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版