![](http://h.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=9a9d2dab91ef76c6d087f32dad26d1c2/f7246b600c33874494b8d0f6500fd9f9d72aa03f.jpg)
如上圖所示,這是一個(gè)半徑為 1 的單位圓.
AB^2=OA^2 + OB^2 - 2*OA * OB * cos(α-β) = 1 + 1 - 2*1*1*cos(α-β) = 2 - 2 *cos(α-β)
根據(jù)勾股定理,
AB^2 = DE^2 + CF^2
= (OD - OE)^2 + (OF + OC)^2
= (OA * sinα - OB * sinβ) ^2 + (OB * cosβ - OA * cosα)^2
= (sinα - sinβ) ^2 + (cosβ - cosα)^2
= (sinα)^2 + (sinβ)^2 - 2*sinα*sinβ + (cosα)^2 + (cosβ)^2 - 2*cosα*cosβ
= (sinα)^2 + (cosα)^2 + (sinβ)^2 + (cosβ)^2 - 2*sinα*sinβ - 2*cosα*cosβ
= 1 + 1 - 2*sinα*sinβ - 2*cosα*cosβ
結(jié)合這兩個(gè)公式,我們可以得到:
2 - 2 *cos(α-β) = 2 - 2*sinα*sinβ - 2*cosα*cosβ
∴ cos(α-β) = cosα*cosβ + sinα*sinβ
上面是兩角差的余弦公式.兩角和的余弦公式如下:
cos(α+β) = cos(α - (-β))
= cosα*cos(-β) + sinα*sin(-β)
∵ cos(-β) = cosβ,sin(-β) = - sinβ
∴ cos(α+β) = cosα*cosβ - sinα*sinβ