①當(dāng)x=0時,顯然ax3-3x+1≥0成立,此時a∈R;
②當(dāng)0<x≤1時,ax3-3x+1≥0即a≥
3x?1 |
x3 |
3x?1 |
x3 |
令f(x)=
3x?1 |
x3 |
3?6x |
x4 |
當(dāng)0<x<
1 |
2 |
1 |
2 |
∴f(x)max=f(
1 |
2 |
| ||
|
∴a≥4;
③當(dāng)-1≤x<0時,ax3-3x+1≥0即a≤
3x?1 |
x3 |
3x?1 |
x3 |
此時f(x)=
3x?1 |
x3 |
3?6x |
x4 |
∴f(x)min=f(-1)=
?3?1 |
(?1)3 |
∴a≤4;
綜上所述,a=4.
故選D.