精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 如何判斷級(jí)數(shù)√(n+2)-2√(n+1)+√n的收斂性?

    如何判斷級(jí)數(shù)√(n+2)-2√(n+1)+√n的收斂性?
    (其中√為開(kāi)二次方根)
    數(shù)學(xué)人氣:510 ℃時(shí)間:2019-12-20 05:26:19
    優(yōu)質(zhì)解答
    an=√(n+2)-2√(n+1)+√n=[√(n+2)-√(n+1)]-[√(n+1)-√n]=(分子有理化)1/[√(n+2)+√(n+1)]-1/[√(n+1)+√n].可令bn=1/[√(n+1)+√n].===>an=b(n+1)-bn.(n=1,2,3,...).===>a1=b2-b1,a2=b3-b2,a3=b4-b3,...an=b(n+1)-bn.===>∑an=b(n+1)-b1,顯然該級(jí)數(shù)收斂于-b1=1-√2.
    我來(lái)回答
    類(lèi)似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版