精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 科技英語翻譯3

    科技英語翻譯3
    Although all systems in the ensemble are composed of
    the same type of particles with the same kind of interactions,
    under the same external conditions, the distribution of particles
    among the different values of microscopic energies
    ~microstate! will differ from system to system. Nevertheless,
    according to statistical mechanics the majority of the systems
    in the ensemble will be in the same equilibrium state ~macrostate!,
    which implies that there will be a most probable
    distribution of particles, whose parameters will be associated
    with the macroscopic state. Even though the interaction is
    the same, the form of the distribution will be determined by
    whether the mechanical treatment given to the particles is
    classical or quantum. The conditions to apply for one or the
    other are established through the Heinsenberg uncertainty
    principle (2pDqDp>h with h being Planck’s constant!,
    which restricts the accuracy with which position, (Dq), and
    momentum, (Dp), can be simultaneously ascribed to a particle,
    or energy and time of measurement.
    A comparison of the number of particles, N, with the
    number of energy states, «i , available to them will lead to a
    criterion for the use of quantum or classical mechanics.
    Thus, if the number of states is very large then the energy
    may be regarded as continuous and classical mechanics will
    be acceptable. An equivalent approach4 is to compare the
    average distance, (V/N)1/3, among particles of mass m, contained
    in a volume V and at temperature T, with the associated
    de Broglie’s wavelength (A2mkT, k being Boltzmann’s
    constant! so that quantum mechanics is required when the
    wavelength is larger than the average distance, since momentum
    and position are not well determined under this condition.
    Quantum mechanically, care should be taken to account
    for the so-called Pauli exclusion principle,5 since it will limit
    the number of particles in a given state. If the occupation
    number is restricted, then the resulting distribution will be
    that of Fermi–Dirac; otherwise, the Bose–Einstein distribution
    will describe the occupation of the accessible states.6
    Both distributions have the Boltzmann distribution as the
    asymptotic limit, which results from the classical treatment
    of the particles and does not restrict the occupation number.
    英語人氣:459 ℃時(shí)間:2020-01-04 03:56:23
    優(yōu)質(zhì)解答
    盡管所有的制度都是由樂團(tuán)同類粒子同一種互動(dòng),在同樣的外部條件下,顆粒分布在不同的價(jià)值觀~microstate微觀能量!將因制度不同而異.然而,根據(jù)統(tǒng)計(jì)力學(xué)系統(tǒng)的大部分樂團(tuán)將在同一國家平衡macrostate~!
    這意味著將有一個(gè)最可能分布顆粒,其范圍將涉及宏觀狀態(tài).即使是相同的互動(dòng)、分配方式將取決于機(jī)械給予治療,是傳統(tǒng)或量子粒子.申請(qǐng)條件是建立一個(gè)或另一個(gè)不確定原則通過Heinsenberg(H與H正在2PDQDP>業(yè)的!
    ,制約著位置的準(zhǔn)確性(部門)、動(dòng)力(下午),同時(shí)可以歸咎于一種粒子,或精力和時(shí)間計(jì)量.
    比較多的微粒、N、能源與多國«一 可他們將導(dǎo)致使用標(biāo)準(zhǔn)量子力學(xué)或古典.
    因此,如果一些國家非常大的能量,可以看作是持續(xù)和古典力學(xué)可以接受.
    作法是把相當(dāng)于平均距離(V/N)1/3,粒子之間的大規(guī)模米,載量的溫度t和v,De與相關(guān)函數(shù)的波長(zhǎng)(A2MKT,K是關(guān)心的不斷!
    因此,量子力學(xué)需要在波長(zhǎng)大于平均距離,由于位置不夠好勢(shì)頭,在這種情況下決定.
    量子機(jī)械 要注意說明所謂現(xiàn)行預(yù)算的支出,因?yàn)樗懦瓌t>將限定在某個(gè)粒子的狀態(tài).
    如果只占領(lǐng)的話,造成的分配將是墨索里尼--Dirac;
    否則,百色-愛因斯坦分布將職業(yè)介紹的可分配states.6都分布有關(guān)心的漸進(jìn)限制 傳統(tǒng)治療所造成的粒子,不限制人數(shù)占領(lǐng).
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版