探究問題:
![](http://hiphotos.baidu.com/zhidao/pic/item/622762d0f703918ff5a7de7e523d269759eec414.jpg)
(1)方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠______.
又AG=AE,AF=AF
∴△GAF≌______.
∴______=EF,故DE+BF=EF.
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=
∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=
∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).
(1)根據(jù)等量代換得出∠GAF=∠FAE,
利用SAS得出△GAF≌△EAF,
∴GF=EF,
故答案為:FAE;△EAF;GF;
(2)證明:延長CF,作∠4=∠1,
∵將Rt△ABC沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=
∠DAB,
∴∠1+∠2=∠3+∠5,
∠2+∠3=∠1+∠5,
∵∠4=∠1,
![](http://hiphotos.baidu.com/zhidao/pic/item/b58f8c5494eef01f982ddd74e3fe9925bc317d42.jpg)
∴∠2+∠3=∠4+∠5,
∴∠GAF=∠FAE,
∵在△AGB和△AED中,
,
∴△AGB≌△AED(ASA),
∴AG=AE,BG=DE,
∵在△AGF和△AEF中,
,
∴△AGF≌△AEF(SAS),
∴GF=EF,
∴DE+BF=EF;
(3)當(dāng)∠B與∠D滿足∠B+∠D=180°時,可使得DE+BF=EF.