則tanα=a,tanβ=b
∵(a+1)(b+1)=2,即(tanα+1)(tanβ+1)=2
∴化簡(jiǎn)得tanα+tanβ=1-tanαtanβ
可得tan(α+β)=
tanα+tanβ |
1?tanαtanβ |
根據(jù)反正切函數(shù)的定義,得α=arctana∈(-
π |
2 |
π |
2 |
π |
2 |
π |
2 |
∴α+β=-
3π |
4 |
π |
4 |
即arctana+arctanb=-
3π |
4 |
π |
4 |
tanα+tanβ |
1?tanαtanβ |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
3π |
4 |
π |
4 |
3π |
4 |
π |
4 |