∵CF∥AB,∴∠FCD=∠CBA=45°,
![](http://hiphotos.baidu.com/zhidao/pic/item/91529822720e0cf38f589e490946f21fbf09aad1.jpg)
即,CD=DF=FE=EC,
∵在等腰直角△ABC中,AC=BC=1,AB=AF,
∴AB=
12+12 |
2 |
∴AF=
2 |
∴在直角△AEF中,(1+EC)2+EF2=AF2
∴(1+DF)2+DF2=(
2 |
解得,DF=
| ||
2 |
(2)如圖,延長(zhǎng)BC,做FD⊥BC,交點(diǎn)為D,延長(zhǎng)CA,做FE⊥CA于點(diǎn)E,
![](http://hiphotos.baidu.com/zhidao/pic/item/0d338744ebf81a4c357a3c7bd42a6059252da63c.jpg)
同理可證,四邊形CDFE是正方形,
即,CD=DF=FE=EC,
同理可得,在直角△AEF中,(EC-1)2+EF2=AF2,
∴(FD-1)2+FD2=(
2 |
解得,F(xiàn)D=
| ||
2 |
故答案為:
| ||
2 |