八(一)班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);
(Ⅱ)如圖2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.
![](http://hiphotos.baidu.com/zhidao/pic/item/55e736d12f2eb938612ac946d6628535e5dd6f3b.jpg)
閱讀后回答下列問(wèn)題:
(1)方案(Ⅰ)是否可行?請(qǐng)說(shuō)明理由;
(2)方案(Ⅱ)是否可行?請(qǐng)說(shuō)明理由;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.
(1)方案(Ⅰ)可行;
∵DC=AC,EC=BC且有對(duì)頂角∠ACB=∠DCE
∴△ACB≌△DCE(SAS)
∴AB=DE
∴測(cè)出DE的距離即為AB的長(zhǎng)
故方案(Ⅰ)可行.
(2)方案(Ⅱ)可行;
∵AB⊥BC,DE⊥CD
∴∠ABC=∠EDC=90°
又∵BC=CD,∠ACB=∠ECD
∴△ABC≌△EDC
∴AB=ED
∴測(cè)出DE的長(zhǎng)即為AB的距離
故方案(Ⅱ)可行.
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE.
若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)不成立;
理由:若∠ABD=∠BDE≠90°,∠ACB=∠ECD,
∴△ABC∽△EDC,
∴
=
,
∴只要測(cè)出ED、BC、CD的長(zhǎng),即可求得AB的長(zhǎng).
但是此題沒(méi)有其他條件,可能無(wú)法測(cè)出其他線段長(zhǎng)度,
∴方案(Ⅱ)不成立.