精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 英語翻譯

    英語翻譯
    2.Thermal Modelling of Grinding
    The finite element model proposed is based on Jaeger's model [2]; it is a 2D model and the grinding wheel is considered to be a moving heat source,see Fig.1.The heat source is characterised by a physical quantity,the heat flux,q,that represents the heat entering an area of workpiece per unit time and is considered to be of the same density along its length,which is taken equal to the geometrical contact length,l.which is calculated from the relation where a is the depth of cut and d ,is the diameter of the gringing wheel .The real contact length is expected to be large owing to the deflection of the grinding wheel and the workpiece in the contact area.Nevertheless,as a first approximation,the geometrical and real contact lengths are considered to be equal.The heat flux can be calculated from the following equation Where is the percentage of heat flux entering the workpiece,the tangential force per unit width of the workpiece,the peripheral wheel speed and the geometrical contact length.The proportion of the heat flux entering the workpiece can be calculated by a formula suggested by Malkin [3,4] for grinding with aluminium oxide wheels,as where is the energy required for chip formation,having a constant value of about 13.8 J mm-3 for grinding all ferrous materials and u is the total specific grinding energy required for grinding,calculated from where is the workspeed and,consequently,as in Jaeger's model,the speed of the moving heat source.Note that,in both Eqs (2) and (4),the value of ,is required in order to calculate the heat flux and the total specific grinding energy,respectively; it can be calculated from where is the power per unit width of the workpiece,which was measured during the testing of the different grinding wheels.Therefore,from Eqs (2)一(5),the heat flux can be calculated for every case.The kind of modelling suggested in this paper is suitable for a grinding process with a very small depth of cut,since there is no modelling of the chip.In any other case,other assumptions must be made for the chip in order to provide a valid model,since the heat carried away by the chip cannot be neglected.Furthermore,the two coef- ficients of the workpiece material that are related to temperature,i.e.the thermal conductivity and the specific heat capacity,along with the density of the workpiece must be inserted as inputs to the program.For the material used in the wheel testing,those quantities were taken from the FEM program data bank.The first two were considered to be temperature dependent.
    英語人氣:388 ℃時間:2020-04-12 00:51:32
    優(yōu)質(zhì)解答
    積的模型[2]提出的有限元模型的基礎(chǔ)上,它是一個二維模型,被認為是一個移動的熱源和砂輪,見圖.1.熱源的特點是一個物理量,熱通量,Q,表示進入了一個面積在單位時間內(nèi)工件的熱,被認為是相同的密度沿其長度,這是采取的幾何接觸長度等于湖這是從關(guān)系,其中一個是削減和D的深度計算,gringing輪的直徑.真正的接觸長度預(yù)計要大,由于砂輪和工件的接觸面積的撓度.然而,作為第一個近似,幾何和真正接觸長度被認為是平等的.進入工件,每單位寬度的工件,外圍輪速度和幾何的接觸長度的切向力的熱通量的百分比在哪里從下面的公式可以計算熱流.進入工件的熱通量的比例建議由一個公式可以計算出馬爾金[3,4]與三氧化二鋁輪磨,芯片形成所需的能量,有一個恒定值約13.8 J毫米磨有色金屬材料和U 3是總具體磨進行研磨所需的能源,其中是計算的workspeed,因此,在Jaeger的模式,移動熱源的速度.需要注意的是,在式(2)和(4)的價值,是必需的,以計算熱通量和總額比磨削能,分別是每單位寬度的力量在哪里,它可以計算工件,這是在測試不同的砂輪測量.因此,從式(2)一(5),熱通量,可以計算出每一種情況下.本文提出一種建模是適合一個非常小的深度與切的研磨過程的,因為沒有芯片的建模.在任何其他情況下,其他的假設(shè)必須作出的芯片,以提供一個有效的模型,因為熱量由芯片進行了不可忽視.此外,兩個工件材料與溫度有關(guān)的系數(shù)ficients,即導(dǎo)熱系數(shù)和比熱容,以及工件的密度必須插入作為程序的輸入.輪測試中所用的材料,這些數(shù)量有限元程序的數(shù)據(jù)銀行.前兩個被認為是隨溫度變化的.自己翻譯的還是機器翻譯的呵呵 對半
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版