精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知數(shù)列{an} {bn} {cn}滿足(an+1-an)(bn+1-bn)=cn,n屬于N*

    已知數(shù)列{an} {bn} {cn}滿足(an+1-an)(bn+1-bn)=cn,n屬于N*
    (1)設(shè)an=1/3^n,bn=1-3n,求數(shù)列{cn}的前n項(xiàng)和Sn
    (2)設(shè)cn=2n+4,{an}是公差為2的等差數(shù)列,若b1=1,求{bn}的通項(xiàng)公式
    (3)設(shè)cn=3n-25,an=n^2-8n,求正整數(shù)k使得對(duì)一切n屬于N*,均有bn≥bk
    數(shù)學(xué)人氣:979 ℃時(shí)間:2019-08-17 18:48:23
    優(yōu)質(zhì)解答
    c(n)=[a(n+1)-a(n)][b(n+1)-b(n)],
    (1) c(n) = -3[1/3^(n+1)-1/3^n] = -3*1/3^(n+1)*[1-3] = 2/3^n,
    s(n) = (2/3)[1+1/3 + ...+ 1/3^(n-1)] = (2/3)[1-1/3^n]/[1-1/3] = 1-1/3^n
    (2) 2n+4 = 2[b(n+1)-b(n)],
    b(n+1)-b(n) = n+2,
    b(n+1) = b(n) + n+2 = b(n) + [n(n+1)-(n-1)n]/2 + 2[n+1-n],
    b(n+1) - n(n+1)/2 - 2(n+1) = b(n) - (n-1)n/2 - 2n,
    {b(n)-(n-1)n/2 - 2n}是首項(xiàng)為b(1)-2=-1,的常數(shù)數(shù)列.
    b(n) - (n-1)n/2 -2n = -1,
    b(n) = (n-1)n/2 + 2n-1
    (3) 3n-25 = [(n+1)^2-n^2-8][b(n+1)-b(n)]=[2n-7-n^2][b(n+1)-b(n)],
    n^2 -2n + 7 = (n-1)^2 + 6 >=6 >0.
    b(n+1)-b(n) = (3n-25)/[2n-7-n^2] = 3(25/3-n)/[(n-1)^2 + 6],
    1b(n),{b(n)}單調(diào)遞增.1
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版