精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • lim(n→∞) {[4/5-6/7+4/(5^2)-6/(7^2)+...+4/(5^n)-6/(7^n)]/[5/6-4/5+5/(6^2)-4/(5^2)+...+5/(6^n)-4/(5^n)]}=( )

    lim(n→∞) {[4/5-6/7+4/(5^2)-6/(7^2)+...+4/(5^n)-6/(7^n)]/[5/6-4/5+5/(6^2)-4/(5^2)+...+5/(6^n)-4/(5^n)]}=( )
    A.-1 B.0 C.1 D.6/7
    數學人氣:998 ℃時間:2020-05-08 18:15:11
    優(yōu)質解答
    先算4/5+4/(5^2)+...+4/(5^n),通分得{4*[1+5+25+...5^(n-1)]}/5^n
    約分得到[(5^n)-1]/5^n.
    同理其它的都可以這么算,最后的lim(n→∞){[4/5-6/7+4/(5^2)-6/(7^2)+...+4/(5^n)-6/(7^n)]/[5/6-4/5+5/(6^2)-4/(5^2)+...+5/(6^n)-4/(5^n)]}等于lim(n→∞){{[(5^n)-1]/5^n}-{[(7^n)-1]/7^n}}/{{[(6^n)-1]/6^n}-{[(7^n)-1]/7^n}}由洛必達定理得結果是-1!選A
    其實選擇題不用這么算,因為觀察看分子是一個負數,分母是一個正數,最后結果一定是負數,選項只有A是負數,所以只能選A!
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版