3.等差數(shù)列的基本性質(zhì)
⑴公差為d的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.
⑵公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.
⑶若{ a }、{ b }為等差數(shù)列,則{ a ±b }與{ka +b}(k、b為非零常數(shù))也是等差數(shù)列.
⑷對任何m、n ,在等差數(shù)列{ a }中有:a = a + (n-m)d,特別地,當(dāng)m = 1時,便得等差數(shù)列的通項公式,此式較等差數(shù)列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數(shù),且l + k + p + … = m + n + r + … (兩邊的自然數(shù)個數(shù)相等),那么當(dāng){a }為等差數(shù)列時,有:a + a + a + … = a + a + a + … .
⑹公差為d的等差數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd( k為取出項數(shù)之差).
⑺如果{ a }是等差數(shù)列,公差為d,那么,a ,a ,…,a 、a 也是等差數(shù)列,其公差為-d;在等差數(shù)列{ a }中,a -a = a -a = md .(其中m、k、 )
⑻在等差數(shù)列中,從第一項起,每一項(有窮數(shù)列末項除外)都是它前后兩項的等差中項.
⑼當(dāng)公差d>0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當(dāng)d<0時,等差數(shù)列中的數(shù)隨項數(shù)的減少而減?。籨=0時,等差數(shù)列中的數(shù)等于一個常數(shù).
⑽設(shè)a ,a ,a 為等差數(shù)列中的三項,且a 與a ,a 與a 的項距差之比 = ( ≠-1),則a = .
5.等差數(shù)列前n項和公式S 的基本性質(zhì)
⑴數(shù)列{ a }為等差數(shù)列的充要條件是:數(shù)列{ a }的前n項和S 可以寫成S = an + bn的形式(其中a、b為常數(shù)).
⑵在等差數(shù)列{ a }中,當(dāng)項數(shù)為2n (n N )時,S -S = nd, = ;當(dāng)項數(shù)為(2n-1) (n )時,S -S = a , = .
⑶若數(shù)列{ a }為等差數(shù)列,則S ,S -S ,S -S ,…仍然成等差數(shù)列,公差為 .
⑷若兩個等差數(shù)列{ a }、{ b }的前n項和分別是S 、T (n為奇數(shù)),則 = .
⑸在等差數(shù)列{ a }中,S = a,S = b (n>m),則S = (a-b).
⑹等差數(shù)列{a }中, 是n的一次函數(shù),且點(n, )均在直線y = x + (a - )上.
⑺記等差數(shù)列{a }的前n項和為S .①若a >0,公差d<0,則當(dāng)a ≥0且a ≤0時,S 最大;②若a <0 ,公差d>0,則當(dāng)a ≤0且a ≥0時,S 最?。?br/>3.等比數(shù)列的基本性質(zhì)
⑴公比為q的等比數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等比數(shù)列,其公比為q ( m為等距離的項數(shù)之差).
⑵對任何m、n ,在等比數(shù)列{ a }中有:a = a · q ,特別地,當(dāng)m = 1時,便得等比數(shù)列的通項公式,此式較等比數(shù)列的通項公式更具有普遍性.
⑶一般地,如果t ,k,p,…,m,n,r,…皆為自然數(shù),且t + k,p,…,m + … = m + n + r + … (兩邊的自然數(shù)個數(shù)相等),那么當(dāng){a }為等比數(shù)列時,有:a .a(chǎn) .a(chǎn) .… = a .a(chǎn) .a(chǎn) .… ..
⑷若{ a }是公比為q的等比數(shù)列,則{| a |}、{a }、{ka }、{ }也是等比數(shù)列,其公比分別為| q |}、{q }、{q}、{ }.
⑸如果{ a }是等比數(shù)列,公比為q,那么,a ,a ,a ,…,a ,…是以q 為公比的等比數(shù)列.
⑹如果{ a }是等比數(shù)列,那么對任意在n ,都有a ·a = a ·q >0.
⑺兩個等比數(shù)列各對應(yīng)項的積組成的數(shù)列仍是等比數(shù)列,且公比等于這兩個數(shù)列的公比的積.
⑻當(dāng)q>1且a >0或0<q<1且a <0時,等比數(shù)列為遞增數(shù)列;當(dāng)a >0且0<q<1或a <0且q>1時,等比數(shù)列為遞減數(shù)列;當(dāng)q = 1時,等比數(shù)列為常數(shù)列;當(dāng)q<0時,等比數(shù)列為擺動數(shù)列.
4.等比數(shù)列前n項和公式S 的基本性質(zhì)
⑴如果數(shù)列{a }是公比為q 的等比數(shù)列,那么,它的前n項和公式是S =
也就是說,公比為q的等比數(shù)列的前n項和公式是q的分段函數(shù)的一系列函數(shù)值,分段的界限是在q = 1處.因此,使用等比數(shù)列的前n項和公式,必須要弄清公比q是可能等于1還是必不等于1,如果q可能等于1,則需分q = 1和q≠1進(jìn)行討論.
⑵當(dāng)已知a ,q,n時,用公式S = ;當(dāng)已知a ,q,a 時,用公式S = .
⑶若S 是以q為公比的等比數(shù)列,則有S = S +qS .⑵
⑷若數(shù)列{ a }為等比數(shù)列,則S ,S -S ,S -S ,…仍然成等比數(shù)列.
⑸若項數(shù)為3n的等比數(shù)列(q≠-1)前n項和與前n項積分別為S 與T ,次n項和與次n項積分別為S 與T ,最后n項和與n項積分別為S 與T ,則S ,S ,S 成等比數(shù)列,T ,T ,T 亦成等比數(shù)列.
求數(shù)列知識點總結(jié)
求數(shù)列知識點總結(jié)
數(shù)學(xué)人氣:368 ℃時間:2020-02-04 22:42:36
優(yōu)質(zhì)解答
我來回答
類似推薦
- 高中數(shù)列知識點有哪些?
- 數(shù)列知識點中‘Sn’是什么?
- 想知道如果自學(xué)微積分需要哪些方面的知識點 知識點目前已經(jīng)看到數(shù)列和極限了.
- 初二物理用天平和量筒測某種液體的密度
- 用雖然……可是……而且造句,
- 你認(rèn)為自然生態(tài)系統(tǒng)中,各種動物的數(shù)量能不能無限增長?為什么?
- 線性代數(shù)里矩陣在左還是在右的問題
- 數(shù)學(xué)生活中哪些地方用到 對數(shù)
- 一個平行四邊形的底于高分別為3.2分米和1.它的面積與一個梯形的面積相等,如果梯形的上底和下底分別為2.4分米和3.6分米,那么它的高是幾?
- 他爸爸愛好烹飪 翻譯His father__________________-.
- 物理題——直線運動
- 涸轍之鮒的本義與比喻
猜你喜歡
- 1氯化鎂是一種鹽,.
- 2設(shè)x為正實數(shù),則函數(shù)y=x^2-x+1/x的最小值是 2.函數(shù)y=-x-9/x+18(x>0)的最大值是
- 3小紅付出200元,買了X本練習(xí)本,每本12.5元應(yīng)該找回()元.當(dāng)X=10時,應(yīng)該找回()元.
- 4盒子里裝有15個球,分別寫著1~15各數(shù).如果摸到的是2的倍數(shù),則小剛贏,如果摸到的不是2的倍數(shù),則小強(qiáng)贏. (1)這樣約定公平嗎?為什么? (2)小剛一定會輸嗎?你能設(shè)計一個公平
- 5四個相同的蘋果隨機(jī)放入三個不同的盤子,有且只有一個盤子中蘋果數(shù)為2的概率是多少?
- 6有126本書,有3個書架,有6層,平均每層放幾本?
- 7850+250*(x-1)=x /2*400+x/2*200
- 8小馬虎解方程3/(2x-1)=2/(x+a)-1,去分母時,方程右邊的-1忘記乘6,因而求得的解為x=4,求a與x的值
- 9He is a man with _ eyes and _ shoulders.a.wide;wide b.broad;broad c.broad;wide d.wide;broad
- 10Sunflower,you are my constant belief.
- 11一個圓錐形沙堆,底面積是31.4m2,高是1.2m,用這堆沙在10m寬的公路上鋪2cm厚的路面,能鋪多少米?
- 12his height is the same as mine.(改為同義句)