(1)設
x2+3x |
x2+x-4 |
則原方程化為
1 |
2 |
1 |
3y |
11 |
12 |
解得x1=-1,x2=-4,x3,4=
5±
| ||
2 |
(2)設1999-x=a,x-1998=b,1999-x+x-1998=1,
則原方程a3+b3=(a+b)3得ab=0,即(x-1998)=0
∴x1=1999,x2=1998
(3)設y=
13-x |
x+1 |
13x-x2 |
x+1 |
x2+13 |
x+1 |
∴xy,x+y是方程x2-13x+42=0的兩個根,
解得x1=6,x2=7,即
|
|
進而可得x1=1,x2=3+
2 |
2 |