飛碟射擊是集時(shí)尚性,健康性,娛樂(lè)性,觀賞性于一體的運(yùn)動(dòng),也是奧運(yùn)會(huì)的正式比賽項(xiàng)目.比賽中碟靶由拋靶機(jī)以一定的角度拋向空中,射手在碟靶落地前將其擊中得分.在雙向飛碟項(xiàng)目中拋靶機(jī)同時(shí)拋出兩枚碟靶,射手只允許射擊兩次.某同學(xué)在飛碟射擊場(chǎng)體驗(yàn)了該項(xiàng)目,若兩碟靶同時(shí)達(dá)到各自最大高度H1、H2(Hl<H2),此時(shí)碟靶速度水平,該同學(xué)開始準(zhǔn)備射擊,并在隨后的時(shí)間里先后擊中兩碟靶于同一高度,射擊的時(shí)間間隔為△t,若兩碟靶的質(zhì)量均為m,碟靶在空中飛行時(shí)豎直方向受到的阻力為重力的K(K<1)倍.求最大高度為H1的碟靶從最高點(diǎn)到被擊中過(guò)程中運(yùn)動(dòng)的時(shí)間.
設(shè)碟靶在豎直方向的加速度為a,從最高點(diǎn)運(yùn)動(dòng)t時(shí)間后被擊中
由牛頓第二定律可知mg-kmg=ma
由于兩碟靶同時(shí)被擊中,并被擊中與同一高度h,故一定是先擊中最大高度為H
1的碟靶
h=H1?at2h=H2?a(t+△t)2解得:
t=?答:最大高度為H
1的碟靶從最高點(diǎn)到被擊中過(guò)程中運(yùn)動(dòng)的時(shí)間
?.