f(x)=log2(x)+logx(2)
f(x)=log2(x)+1/log2(x)
定義域滿足:
x>0
x≠1
所以:定義域?yàn)椋?,1)∪(1,+∞)
1)
0
當(dāng)且僅當(dāng)log2(x)=1/log2(x)即Log2(x)=-1即x=1/2時(shí)取得最大值-2
2)
x>1時(shí),log2(x)>0
f(x)=log2(x)+1/log2(x)>=2√ [log2(x)*1/log2(x)]=2
當(dāng)且僅當(dāng)log2(x)=1/log2(x)即log2(x)=1即x=2時(shí)取得最小值2
所以:
值域?yàn)椋?∞,-2]∪[2,+∞)