px2+2 |
x?q |
∴f(2)=
4p+2 |
2?q |
即4p+2=10-5q,
∴4p+5q=8,
由f(x)+f(-x)=0得
px2+2 |
x?q |
px2+2 |
?x?q |
px2+2 |
x+q |
∴-q=q,解得q=0,
∴p=2.
(2)∵p=2,q=0,
∴函數(shù)f(x)=
px2+2 |
x?q |
2x2+2 |
x |
2 |
x |
f(x)在[1,+∞)上的單調(diào)遞增.
證明:設(shè)x2>x1≥1,
則f(x2)-f(x1)=2(x2?x1)+
2(x1?x2) |
x1x2 |
x1x2?1 |
x1x2 |
∵x2>x1≥1,
∴x2-x1>0,x2x1>1,
∴f(x2)-f(x1)>0,
即f(x2)>f(x1),
∴函數(shù)f(x)在[1,+∞)上的單調(diào)遞增.