c |
2a |
而cosB=
a2+c2?b2 |
2ac |
a2+c2?b2 |
2ac |
c |
2a |
化簡得:a2+c2-b2=c2,即a=b,
∴A=B;
(II)根據余弦定理得:cos60°=
1 |
2 |
a2+c2?b2 |
2ac |
3ac |
2 |
則a2+c2-
3ac |
2 |
解得a=
c |
2 |
當a=
c |
2 |
2acosB |
c |
| ||
c |
1 |
2 |
當a=2c時,由λc=2acosB,得到λ=
2acosB |
c |
| ||
c |
綜上,λ的值為
1 |
2 |
c |
2a |
a2+c2?b2 |
2ac |
a2+c2?b2 |
2ac |
c |
2a |
1 |
2 |
a2+c2?b2 |
2ac |
3ac |
2 |
3ac |
2 |
c |
2 |
c |
2 |
2acosB |
c |
| ||
c |
1 |
2 |
2acosB |
c |
| ||
c |
1 |
2 |