![](http://hiphotos.baidu.com/zhidao/pic/item/3b87e950352ac65c3a8d60f1f8f2b21192138aa3.jpg)
tanA+tanC |
3 |
sinB |
cosC |
∴
sinA |
cosA |
sinC |
cosC |
3sinB |
cosC |
去分母得:3sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB,
∵sinB≠0,
∴3cosA=1,
∴cosA=
1 |
3 |
(2)∵b=2,c=3,
∴a2=b2+c2-2bccosA=9,
∴|BC|=a=3,
∵
CD |
DB |
∴|DC|=2,cosC=
a2+b2-c2 |
2ab |
9+4-9 |
12 |
1 |
3 |
∴|AD|2=22+22-2×2×2cosC=
16 |
3 |
∴|AD|=
4
| ||
3 |