由題意知,原數(shù)據(jù)的平均數(shù)
=
(x
1+x
2+…+x
5)=3
方差S
2=
[(x
1-3)
2+(x
2-3)
2+…+(x
5-3)
2]=(
)
2=16
另一組數(shù)據(jù)的平均數(shù)
2=
[5x
1-1+5x
2-1+…+5x
5-1]=
[5(x
1+x
2+…+x
n)-5]
=
×5(x
1+x
2+…+x
n)-1
=5
-1=15-1=14;
方差S
22=
[(5x
1-1-14)
2+(5x
2-1-14)
2+…+(5x
5-1-14)
2]=
{25[(x
1-3)
2+(x
2-3)
2+…+(x
5-3)
2]}=25S
2=400,
故答案為:14,400.