∴∠BAC+∠EAC=∠DAE+∠EAC.
∴∠EAB=∠DAC①;
又∵∠AEB=∠DAE+∠BDA=∠BDC+∠BDA,
∴∠AEB=∠ADC②;
由①和②得△AEB∽△ADC.
∴
BE |
DC |
AE |
AD |
(2)猜想:
BC |
DE |
AC |
AD |
BC |
DE |
AB |
AE |
證明:∵△AEB∽△ADC,
∴
AB |
AE |
AC |
AD |
∵∠BAC=∠DAE,
∴△BAC∽△EAD.
∴
BC |
ED |
AC |
AD |
AB |
AE |
BC |
DE |
BE |
DC |
AE |
AD |
BC |
DE |
AC |
AD |
BC |
DE |
AB |
AE |
AB |
AE |
AC |
AD |
BC |
ED |
AC |
AD |
AB |
AE |