可得圓心P坐標(biāo)為(a,0),半徑r=
3?2a |
3 |
2 |
由題意可得點(diǎn)A在圓外,即|AP|=
(a?a)2+(a?0)2 |
3?2a |
即有a2>3-2a,整理得:a2+2a-3>0,即(a+3)(a-1)>0,
解得:a<-3或a>1,又a<
3 |
2 |
可得a<-3或 1<a<
3 |
2 |
則實(shí)數(shù)a的取值范圍是(-∞,-3)∪(1,
3 |
2 |
故答案為:(-∞,-3)∪(1,
3 |
2 |
3?2a |
3 |
2 |
(a?a)2+(a?0)2 |
3?2a |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |