精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 如圖.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分別于BC、CD交于E、F,EH⊥AB于H.連接FH,求證:四邊形CFHE是菱形.

    如圖.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分別于BC、CD交于E、F,EH⊥AB于H.連接FH,求證:四邊形CFHE是菱形.
    數(shù)學(xué)人氣:208 ℃時間:2020-05-20 20:25:04
    優(yōu)質(zhì)解答
    證明:∵∠ACB=90°,AE平分∠BAC,EH⊥AB,
    ∴CE=EH,
    在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,由勾股定理得:AC=AH,
    ∵AE平分∠CAB,
    ∴∠CAF=∠HAF,
    在△CAF和△HAF中
    AC=AH
    ∠CAF=∠HAF
    AF=AF

    ∴△CAF≌△HAF(SAS),
    ∴∠ACD=∠AHF,
    ∵CD⊥AB,∠ACB=90°,
    ∴∠CDA=∠ACB=90°,
    ∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,
    ∴∠ACD=∠B=∠AHF,
    ∴FH∥CE,
    ∵CD⊥AB,EH⊥AB,
    ∴CF∥EH,
    ∴四邊形CFHE是平行四邊形,
    ∵CE=EH,
    ∴四邊形CFHE是菱形.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版