∴Sn+1-Sn=2Sn,
∴
Sn+1 |
Sn |
又∵S1=a1=1,
∴數(shù)列{Sn}是首項(xiàng)為1、公比為3的等比數(shù)列,Sn=3n-1(n∈N*).
∴當(dāng)n≥2時(shí),an-2Sn-1=2?3n-2(n≥2),
∴an=
|
(II)Tn=a1+2a2+3a3+…+nan,
當(dāng)n=1時(shí),T1=1;
當(dāng)n≥2時(shí),Tn=1+4?30+6?31+…+2n?3n-2,①3Tn=3+4?31+6?32+…+2n?3n-1,②
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n?3n-1=2+2?
3(1?3n?2) |
1?3 |
∴Tn=
1 |
2 |
1 |
2 |
又∵Tn=a1=1也滿(mǎn)足上式,∴Tn=
1 |
2 |
1 |
2 |