a |
sinA |
b |
sinB |
c |
sinC |
又b(cosA-2cosC)=(2c-a)cosB,
∴sinB(cosA-2cosC)=(2sinC-sinA)cosB,即sinBcosA-2sinBcosC=2sinCcosB-sinAcosB,
∴sin(A+B)=2sin(B+C),即sinC=2sinA,
則c=2a,即
c |
a |
(Ⅱ)由(Ⅰ)∵c=2a,a+b+c=5,
∴b=5-(a+c)=5-3a,
由余弦定理得:b2=c2+a2-2accosB,
∴(5-3a)2=(2a)2+a2-4a2×
1 |
4 |
解得:a=1或a=5,
當(dāng)a=1時(shí),b=2;當(dāng)a=5時(shí),與a+b+c=5矛盾,
則b=2.