精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 數(shù)列{an}中,已知sn=an-1/sn-2,①:求出s1,s2,s3,s4,②:猜想數(shù)列{an}的前n項(xiàng)和sn的公式,并加以證明

    數(shù)列{an}中,已知sn=an-1/sn-2,①:求出s1,s2,s3,s4,②:猜想數(shù)列{an}的前n項(xiàng)和sn的公式,并加以證明
    數(shù)列{an}中,已知sn=an-1/sn-2,①:求出s1,s2,s3,s4,②:猜想數(shù)列{an}的前n項(xiàng)和sn的公式,并加以證明
    數(shù)學(xué)人氣:282 ℃時(shí)間:2020-03-25 01:53:29
    優(yōu)質(zhì)解答
    數(shù)列{a(n)}中,已知s(n) = a(n) - 1/s(n) - 2,①:求出s(1),s(2),s(3),s(4),②:猜想數(shù)列{a(n)}的前n項(xiàng)和s(n)的公式,并加以證明
    s(1) = a(1) = a(1) - 1/s(1) - 2,
    0 = -1/s(1) - 2,
    s(1) = -1/2.
    s(2) = s(1) + a(2) = -1/2 + a(2) = a(2) - 1/s(2) - 2,
    -1/2 = -1/s(2) - 2,
    s(2) = -2/3.
    s(3) = s(2) + a(3) = -2/3 + a(3) = a(3) - 1/s(3) - 2,
    -2/3 = -1/s(3) -2,
    s(3) = -3/4.
    s(4) = s(3) + a(4) = -3/4 + a(4) = a(4) - 1/s(4) - 2,
    -3/4 = -1/s(4) -2,
    s(4) = -4/5.
    ① s(1) = -1/2,s(2) = -2/3,s(3) = -3/4,s(4) = -4/5.
    ② 猜想數(shù)列{a(n)}的前n項(xiàng)和s(n) = -n/(n+1)
    證明,
    (1)n = 1,s(1) = -1/2.符合猜想.
    (2)假設(shè)n = k時(shí),有 s(k) = -k/(k+1),
    則n = k+1時(shí),有
    s(k+1) = s(k) + a(k+1) = -k/(k+1) + a(k+1) = a(k+1) - 1/s(k+1) - 2,
    -k/(k+1) = -1/s(k+1) - 2,
    s(k+1) = -(k+1)/(k+2).
    符合猜想.
    因此,由歸納法證得,
    數(shù)列{a(n)}的前n項(xiàng)和s(n) = -n/(n+1),n = 1,2,...
    的結(jié)論成立.
    我來(lái)回答
    類(lèi)似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版