設(shè)N(x,y)則
|
所以MN的中點(diǎn)P坐標(biāo)為(0,±1).
(2):設(shè)N(x,y)由已知得,在圓方程中令y=0,求得M點(diǎn)的坐標(biāo)為(1-r,0).
設(shè)P(0,b),則由kCPkmp=-1(或用勾股定理)得:r=b2+1.
則
|
又r>1,所以點(diǎn)N的軌跡方程為y2=4x(x≠0).
(3)設(shè)直線l的方程為y=kx+2,M(x1,y1),N(x2,y2),
|
消去y得k2x2+(4k-4)x+4=0,因?yàn)橹本€l與拋物線y2=4x(x>0)相交于兩個(gè)不同的點(diǎn)M,N,
所以△=-32k+16>0,所以k<
1 |
2 |
又因?yàn)?span>
CM |
CN |
所以(k2+1)x1x2+(2k-1)(x1+x2)+5>0,得k2+12k>0,
所以k>0或k<-12,
綜上可得0<k<
1 |
2 |