求由x²+y²≦2x與y≧x所表示的圖形繞直線x=2旋轉(zhuǎn)一周而成的旋轉(zhuǎn)體的體積
x²-2x+y²=(x-1)²+y²-1≦0,與y≧x所表示的圖形是園(x-1)²+y²=1被直線y=x截下的一個(gè)弓形,此
弓形繞直線x=2旋轉(zhuǎn)一周而成的旋轉(zhuǎn)體是一個(gè)中空的鼓形,其體積可如下計(jì)算:
弓形園弧段的旋轉(zhuǎn)半徑:R=2-[1-√(1-y²)]=1+√(1-y²);弓形弦的旋轉(zhuǎn)半徑r=2-x=2-y;
取厚度為dy的簿片,其微體積dv=π(R²-r²)dy=π{[1+√(1-y²)]²-(2-y)²}dy=π[4y-2y²-2+2√(1-y²)]dy
故旋轉(zhuǎn)體的體積V=[0,1]π∫[4y-2y²-2+2√(1-y²)]dy
=π{2y²-(2/3)y³-2y+2[(y/2)√(1-y²)+(1/2)arcsiny]}∣[0,1]
=π[2-(2/3)-2+2(π/4)]=(π/2-2/3)π