1 |
2 |
1 |
2 |
因?yàn)閮绍囁艿暮狭ο嗟?,根?jù)牛頓第二定律有:a1=4a2
解得:a1=0.4m/s2,a2=0.1m/s2
則v1=a1t=0.4×2m/s=0.8m/s,v2=a2t=0.1×2m/s=0.2m/s
(2)兩車在碰撞的前后瞬間動(dòng)量守恒,根據(jù)動(dòng)量守恒定律得,
mv1-Mv2=mv'1+Mv'2
根據(jù)能量守恒定律得,
1 |
2 |
v | 21 |
1 |
2 |
v | 22 |
1 |
2 |
′ | 21 |
1 |
2 |
′ | 22 |
代入數(shù)據(jù)解得:v'1=-0.8m/s,v'2=0.2m/s
或v'1=0.8m/s,v'2=-0.2m/s(這組解不符合題意,舍去)
所以電動(dòng)車的速度方向向左,平板車的速度方向向右
(3)要使電動(dòng)車不脫離平板車,臨界情況是:電動(dòng)車相對(duì)平板車滑到最左端時(shí),兩車的速度相等.
根據(jù)動(dòng)量守恒有,mv'1+Mv'2=(m+M)v,得v=0
則由能量守恒得:μmgL=
1 |
2 |
′ | 21 |
1 |
2 |
′ | 22 |
解得:μ=0.04
答:(1)碰撞前瞬間兩車的速度大小各為0.8m/s,0.2m/s.
(2)碰后電動(dòng)車的速度大小為0.8m/s,方向水平向左,平板車的速度大小為0.2m/s,方向水平向右.
(3)它們之間的動(dòng)摩擦因數(shù)至少為0.04.