![](http://hiphotos.baidu.com/zhidao/pic/item/5ab5c9ea15ce36d35c2f7b8139f33a87e950b15c.jpg)
由已知可得四邊形ABGD為正方形,
∵DE⊥DC.
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC.
在△EDF和△CDF中
|
∴△EDF≌△CDF,
∴EF=CF;
(2)∵tan∠ADE=
AE |
AD |
1 |
3 |
∴AE=GC=2.
∴BC=8,
BE=4,設CF=x,則BF=8-CF=8-x,
在Rt△BEF中,由勾股定理得:x2=(8-x)2+42,
解得x=5,
即EF=5.
1 |
3 |
|
AE |
AD |
1 |
3 |