即
e?x |
a |
a |
e?x |
e?x |
a |
a |
e?x |
1 |
a |
即a+
1 |
a |
所以f(x)不可能是奇函數(shù).
(2)當(dāng)a=1時(shí),f(x)=ex+e-x,以下討論其單調(diào)性;
任取x1,x2∈R,且x1<x2,
則f(x1)-f(x2)=ex1+e?x1?ex2?e?x2=
(ex1?ex2)(ex1+x2?1) |
ex1?ex2 |
其中ex1?ex2>0,ex1?ex2<0,當(dāng)ex1+x2?1>0時(shí),f(x1)<f(x2),f(x)為減函數(shù),
此時(shí)需要x1+x2>0,即增區(qū)間為[0,+∞),反之(-∞,0]為減函數(shù),
即函數(shù)在區(qū)間[0,+∞)上是增函數(shù),在(-∞,0]上為減函數(shù).