![](http://hiphotos.baidu.com/zhidao/pic/item/dcc451da81cb39dbb8f89be7d3160924ab183042.jpg)
(2)如圖2,以A為頂點(diǎn)AB為邊在△ABC外作∠BAE=60°,并在AE上取AE=AB,連接BE和CE.
∵△ACD是等邊三角形,
∴AD=AC,∠DAC=60°.
∵∠BAE=60°,
∴∠DAC+∠BAC=∠BAE+∠BAC.
即∠EAC=∠BAD.
∴△EAC≌△BAD.
∴EC=BD.
∵∠BAE=60°,AE=AB=3,
∴△AEB是等邊三角形,
∴∠EBA=60°,EB=3,
∵∠ABC=30°,
∴∠EBC=90°.
∵∠EBC=90°,EB=3,BC=4,
∴EC=5.
∴BD=5.
(3)∠DAC=2∠ABC成立,
以下證明:
如圖3,過(guò)點(diǎn)B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點(diǎn)K,連接AK.
∵AH⊥BC于H,
∴∠AHC=90°.
∵BE∥AH,
∴∠EBC=90°.
∵∠EBC=90°,BE=2AH,
∴EC2=EB2+BC2=4AH2+BC2.
∵BD2=4AH2+BC2,
∴EC=BD.
∵K為BE的中點(diǎn),BE=2AH,
∴BK=AH.
∵BK∥AH,
∴四邊形AKBH為平行四邊形.
又∵∠EBC=90°,
∴四邊形AKBH為矩形.
∴∠AKB=90°.
∴AK是BE的垂直平分線.
∴AB=AE.
∵AB=AE,EC=BD,AC=AD,
∴△EAC≌△BAD.
∴∠EAC=∠BAD.
∴∠EAC-∠EAD=∠BAD-∠EAD.
即∠EAB=∠DAC.
∵∠EBC=90°,∠ABC為銳角,
∴∠ABC=90°-∠EBA.
∵AB=AE,
∴∠EBA=∠BEA.
∴∠EAB=180°-2∠EBA.
∴∠EAB=2∠ABC.
∴∠DAC=2∠ABC.