a |
q |
a |
q |
2 |
q |
2 |
q |
2 |
q |
又a3、a4、a5為等差數(shù)列,所以a3+a5=2a4,即
2 |
q |
1 |
2 |
因?yàn)槿齻€數(shù)是從小到大成等比數(shù)列,所以q=
1 |
2 |
所以三個數(shù)為,1,2,4.即a3=3,a4=4,a5=5.
所以公差d=1,所以數(shù)列{an}的通項(xiàng)公式為an=a3+(n?3)=n,n∈N?.
(Ⅱ)因?yàn)?span>bn=
an+1 |
an |
an |
an+1 |
n+1 |
n |
n |
n+1 |
1 |
n |
1 |
n+1 |
所以Tn=(2+1?
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=2n+1?
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
n |
n+1 |
即數(shù)列{bn}的前項(xiàng)和為Tn=2n+
n |
n+1 |