∴
y+3 |
x+2 |
x2?2x+5 |
x+2 |
令x+2=t(1≤t≤3),則x=t-2
∴
y+3 |
x+2 |
t2?6t+13 |
t |
13 |
t |
設(shè)f(t)=t+
13 |
t |
13 |
t2 |
∴函數(shù)在[1,3]上,f′(t)<0,函數(shù)為減函數(shù)
∴t=1時(shí),函數(shù)取得最大值f(1)=8;t=3時(shí),函數(shù)取得最小值f(3)=
4 |
3 |
∴
y+3 |
x+2 |
28 |
3 |
故答案為:
28 |
3 |
y+3 |
x+2 |
y+3 |
x+2 |
x2?2x+5 |
x+2 |
y+3 |
x+2 |
t2?6t+13 |
t |
13 |
t |
13 |
t |
13 |
t2 |
4 |
3 |
y+3 |
x+2 |
28 |
3 |
28 |
3 |