英語翻譯
英語翻譯
6."Take the barometer to the top of the building and lean over the edge of the roof.Drop the barometer,timing its fall with a stopwatch.Then,using the formula S = ½at2,calculate the height of the building."
7.At this point,I asked my colleague if he would give up.He conceded,and I gave the student almost full credit.
8.In leaving my colleague's office,I recalled that the student had said he had other answers to the problem,so I asked him what they were."Oh yes," said the student."There are many ways of getting the height of a tall building with the aid of a barometer.For example,you could take the barometer out on a sunny day and measure the height of the barometer,the length of its shadow,and the length of the shadow of the building,and by the use of a simple proportion,determine the height of the building."
9."Fine," I said."And the others?"
10."Yes," said the student."There is a very measurement method that you will like.In this method,you take the barometer and begin to walk up the stairs.As you climb the stairs,you mark off the length of the barometer along the wall.You then count the number of marks,and this will give you the height of the building in barometer units.A very direct method.
11."Of course,if you want a more sophisticated method,you can tie the barometer to the end of a string,swing it as a pendulum and determine the value of g at the street level and at the top of the building.From the difference between the two values of g,the height of the building can,in principle,be calculated."
12.Finally he concluded,there are many other ways of solving the problem."Probably the best," he said,"is to take the barometer to the basement and knock on the superintendent's door.When the superintendent answers,you speak to him as follows:'Mr.Superintendent,here I have a fine barometer.If you will tell me the height of this building,I will give you this barometer.' "
13.At this point,I asked the student if he really did not know the conventional answer to this question.He admitted that he did,but said that he was fed up with high school and college instructor trying to teach him how to think,to use the "scientific method," and to explore the deep inner logic of the subject in a pedantic way,as is often done in the new mathematics,rather than teaching him the structure of the subject.With this in mind,he decided to revive scholasticism as an academic lark to challenge the Sputnik panicked classrooms of America.
6."Take the barometer to the top of the building and lean over the edge of the roof.Drop the barometer,timing its fall with a stopwatch.Then,using the formula S = ½at2,calculate the height of the building."
7.At this point,I asked my colleague if he would give up.He conceded,and I gave the student almost full credit.
8.In leaving my colleague's office,I recalled that the student had said he had other answers to the problem,so I asked him what they were."Oh yes," said the student."There are many ways of getting the height of a tall building with the aid of a barometer.For example,you could take the barometer out on a sunny day and measure the height of the barometer,the length of its shadow,and the length of the shadow of the building,and by the use of a simple proportion,determine the height of the building."
9."Fine," I said."And the others?"
10."Yes," said the student."There is a very measurement method that you will like.In this method,you take the barometer and begin to walk up the stairs.As you climb the stairs,you mark off the length of the barometer along the wall.You then count the number of marks,and this will give you the height of the building in barometer units.A very direct method.
11."Of course,if you want a more sophisticated method,you can tie the barometer to the end of a string,swing it as a pendulum and determine the value of g at the street level and at the top of the building.From the difference between the two values of g,the height of the building can,in principle,be calculated."
12.Finally he concluded,there are many other ways of solving the problem."Probably the best," he said,"is to take the barometer to the basement and knock on the superintendent's door.When the superintendent answers,you speak to him as follows:'Mr.Superintendent,here I have a fine barometer.If you will tell me the height of this building,I will give you this barometer.' "
13.At this point,I asked the student if he really did not know the conventional answer to this question.He admitted that he did,but said that he was fed up with high school and college instructor trying to teach him how to think,to use the "scientific method," and to explore the deep inner logic of the subject in a pedantic way,as is often done in the new mathematics,rather than teaching him the structure of the subject.With this in mind,he decided to revive scholasticism as an academic lark to challenge the Sputnik panicked classrooms of America.
英語人氣:371 ℃時間:2020-04-22 02:47:23
優(yōu)質(zhì)解答
6、把氣壓計放在大樓的頂端,靠在樓頂?shù)倪吘?讓氣壓計向下墜落,用秒表記下它降落的時間.然后用公式S = ½at2計算出大樓的高度.(是物理實驗題吧,好像中學(xué)的時候也碰到過.)7、在這一點上,我問我的同事是否將要...
我來回答
類似推薦
- 英語翻譯
- 英語翻譯
- 英語翻譯
- 把四張紙牌背面朝上放在桌子上,洗勻后,隨機從中摸取一張,看完牌后,放回去洗勻,再摸,1:統(tǒng)計了100次結(jié)果,摸到老K共25次,請你估計老K有多少張?2:根據(jù)1的數(shù)據(jù),求出兩次都沒摸到老K的概率
- 停車場客車的輛數(shù)是貨車的1.5倍,客車開走42輛后,剩下的客車和貨車的輛數(shù)相等,原來客車和貨車各有多少輛?
- I m___ all the clothes together myself
- 曲線x=根號2cosθ,y=sinθ(θ為參數(shù))上的點到直線x=(根號2)*t,y=-1+t(t為參數(shù))的距離的最大值為
- Man ___ without air.
- 1.已知a.b兩個不共線的向量,且a=(cosα,sinα),b=(cosβ,sinβ) (1),
- As soon as she gets home,she ___ (turn) on the TV
- 24分之12化簡是多少
- 英語翻譯
猜你喜歡
- 1公式U=Ed中各字母代表什么意思
- 2一根方鋼長5米,橫截面是一個邊長為分米的正方形,這根方鋼的橫截面積是多少平方分米?
- 3把2008年汶川地震中發(fā)生的事寫成一句比喻句,排比句,還有擬人句.快,明天要交.
- 4燕子從天空中掠過(擴句,至少擴2處)
- 5同時存在四離子濃度均為0.1mol/L 溶度積常數(shù):Mg(OH)2 1.2乘10-11 Fe(OH)2 1.6乘10-14 Mn(OH)2 4乘10-...
- 6如何區(qū)分公蟹與母蟹
- 7孝順父母長輩的成語
- 8春雨,染綠了世界,而自己卻無聲地消失在泥土之中,老師,您就是我~運用了什么修辭手法.
- 9He didn't have breakfast ,___ he got up late.A.because B.since C.as D.for
- 10小明每分鐘騎車行0.4km,小剛騎車行1km用了3分鐘.誰騎車的速度快一些?
- 11英語翻譯
- 1210的a次方等于20,10的b次方等于5的-1次方 求3的2a次方÷9的b次方